The present study simulates numerically the flow across two-dimensional tilting disk models of mechanical heart valves. The time-dependent Navier-Stokes equations are solved to assess the importance of unsteady effects in the fully open position of the valve. Flow cases with steady or physiological inflow conditions and with fixed or moving valves are solved. The simulations lead into mixed conclusions. It is obvious that steady inflow cases that account for vortex shedding only cannot model realistic physiological cases. In cases with imposed physiological inflow, the details of the flow field for fixed and moving valves might differ in the fully open position as well, although the gross features are quite similar. The fixed valve case consistently results in safe estimations of several critical quantities such as the axial force, the maximal shear stress on the valve, or the transvalvular pressure drop. Thus, fixed valve simulations can provide useful information for the design of prosthetic heart valves, as long as the properties in the fully open position only are sought.

1.
Cannegieter
,
S. C.
,
Rosendaal
,
F. R.
, and
Briet
,
E.
,
1994
, “
Thromboembolic and Bleeding Complications in Patients with Mechanical Heart Valve Prostheses
,”
Circulation
,
89
, pp.
635
641
.
2.
Tansley
,
G. D.
,
Edwards
,
R. J.
, and
Gentle
,
C. R.
,
1988
, “
Role of Computational Fluid Mechanics in the Analysis of Prosthetic Heart Valve Flow
,”
Med. Biol. Eng. Comput.
,
26
, pp.
175
185
.
3.
Wilkins
,
G. T.
,
Gilam
,
L. D.
,
Kritzer
,
G. L.
,
Levine
,
R. A.
,
Palacios
,
I. F.
, and
Weyman
,
A. E.
,
1986
, “
Validation of Continuous-Wave Doppler Echocardiographic Measurements of Mitral and Tricuspid Prosthetic Valve Gradients: A Simultaneous Doppler-Catheter Study
,”
Circulation
,
74
(
4
), pp.
786
795
.
4.
Kapur
,
K. K.
,
Fan
,
P.
,
Nanda
,
N. C.
,
Yoganathan
,
A. P.
, and
Goyal
,
R. G.
,
1989
, “
Doppler Color Flow Mapping in the Mitral and Aortic Valve Function
,”
J. Am. Coll. Cardiol.
,
13
, No.
7
, pp.
1561
1571
.
5.
Burstow
,
D. J.
,
Nishimura
,
R. A.
,
Bailey
,
K. R.
,
Reeder
,
G. S.
,
Holmes
,
D. R.
,
Seward
,
J. B.
, and
Tajik
,
A. J.
,
1989
, “
Continous Wave Doppler Echocardiographic Measurement of Prosthetic Valve Gradients
,”
Circulation
,
80
, No.
3
, pp.
504
514
.
6.
Woo
,
Y. R.
, and
Yoganathan
,
A. P.
,
1986
, “
In Vitro Pulsatile Flow Velocity and Shear Stress Measurements in the Vicinity of Mechanical Mitral Heart Valve Prostheses
,”
J. Biomech.
,
19
, pp.
39
51
.
7.
Hanle
,
D. D.
,
Harrison
,
E. C.
,
Yoganathan
,
A. P.
,
Allen
,
D. A.
, and
Corcoran
,
W. H.
,
1989
, “
In Vitro Flow Dynamics of Four Prosthetic Aortic Valves: A Comparative Analysis
,”
J. Biomech.
,
22
, No.
6/7
, pp.
597
607
.
8.
Schoephoerster
,
R. T.
, and
Chandran
,
K. B.
,
1991
, “
Velocity and Turbulence Measurements Past Mitral Valve Prostheses in a Model Left Ventricle
,”
J. Biomech.
,
24
, pp.
549
562
.
9.
Bruker
,
C. H.
,
1997
, “
Dual-Camera DPIV for Flow Studies Past Artificial Heart Valves
,”
Exp. Fluids
,
22
, pp.
496
506
.
10.
Idelsohn
,
S. R.
,
Costa
,
L. E.
, and
Ponso
,
R.
,
1985
, “
A Comparative Computational Study of Blood Flow Through Prosthetic Heart Valves Using the Finite Element Method
,”
J. Biomech.
,
18
, No.
2
, pp.
97
115
.
11.
Kiris, C., Chang, I., Rogers, S. E., and Kwak, D., 1990, “Numerical Simulation of the Incompressible Internal Flow Through a Tilting Disk Valve,” AIAA Paper No.90-0682.
12.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1992
, “
Cardiac Fluid Dynamics
,”
Crit. Rev. Biomed. Eng.
,
20
, No.
5,6
, pp.
451
459
.
13.
Huang
,
Z. J.
,
Merkle
,
C. L.
,
Abdallah
,
S.
,
Tarbell
,
J. M.
,
1994
, “
Numerical Simulation of Unsteady Laminar Flow Through a Tilting Disk Heart Valve: Prediction of Vortex Shedding
,”
J. Biomech.
,
27
, No.
4
, pp.
391
402
.
14.
Black
,
M. M.
,
Hose
,
D. R.
,
Lamb
,
C. J.
,
Lawford
,
P. V.
, and
Ralph
,
S. J.
,
1994
, “
In Vitro Heart Valve Testing: Steady Versus Pulsatile Flow
,”
J. Vac. Sci. Technol.
,
3
, No.
2
, pp.
212
215
.
15.
Shim
,
E. B.
, and
Chang
,
K. S.
,
1997
, “
Numerical Analysis of Three-Dimensional Bjork-Shiley Valvular Flow in an Aorta
,”
ASME J. Biomech. Eng.
,
119
, No.
1
, pp.
45
51
.
16.
King
,
M. J.
,
David
,
T.
, and
Fisher
,
J.
,
1997
, “
Three Dimensional Study of the Effect of Two Leaflet Opening Angles of the Time Dependent Flow Through a Bileaflet Mechanical Heart Valve
,”
Med. Eng. Phys.
,
19
, No.
3
, pp.
235
241
.
17.
Lei
,
M.
,
Van Steenhoven
,
A. A.
, and
Van Campen
,
D. H.
,
1992
, “
Experimental and Numerical Analyses of the Steady Flow Field Around An Aortic Bjork-Shiley Standard Valve Prostheses
,”
J. Biomech.
,
3
, pp.
213
222
.
18.
King
,
M. J.
,
David
,
T.
, and
Fisher
,
J.
,
1994
, “
An Initial Parametric Study on Fluid Flow Through Bileaflet Mechanical Heart Valves Using Computational Fluid Dynamics
,”
J. Eng Med
,
208
, pp.
63
71
.
19.
King
,
M. J.
,
Corden
,
J.
,
David
,
T.
, and
Fisher
,
J.
,
1996
, “
A Three Dimensional Time-Dependant Analysis of Flow Through a Bileaflet Mechanical Heart Valve: Comparison of Experimental and Numerical Results
,”
J. Biomech.
,
29
, No.
5
, pp.
609
618
.
20.
Roshcke, E. J., Harrison, E. C., Carl, J. R., Panrnassus, W., and Moachanin, J., 1977, “Evaluation of Recovered Prosthetic Heart Valves,” Proc. of AAMI 12th Meeting, San Francisco.
21.
Yoganathan
,
P.
, and
Corcoran
,
W. H.
,
1979
, “
Pressure Drop Across Prosthetic Aortic Heart Valves
,”
J. Biomech.
,
12
, pp.
153
164
.
22.
Emery
,
P. W.
, and
Nicoloff
,
D. M.
,
1979
, “
St. Jude Medical Cardiac Valve Prosthesis
,”
J. Thorac. Cardiovasc. Surg.
,
78
, pp.
269
276
.
23.
Reul, H., 1997, Private communication.
24.
Figliola
,
R. S.
, and
Mueller
,
T. J.
,
1981
, “
On the Hemolytic and Thrombogenic Potential of Occluder Prosthetic Heart Valves from In-Vitro Measurements
,”
ASME J. Biomech. Eng.
,
103
, pp.
83
90
.
25.
Cheon
,
G. J.
, and
Chandran
,
K. N.
,
1993
, “
Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses in the Opening Phase
,”
ASME J. Biomech. Eng.
,
115
, pp.
389
395
.
26.
Sobey
,
I. J.
,
1985
, “
Observation of Waves During Oscillatory Channel Flow
,”
J. Fluid Mech.
,
151
, pp.
395
426
.
27.
Tutty
,
O. R.
, and
Pedley
,
T. J.
,
1994
, “
Unsteady Flow in a Nonuniform Channel: A Model For Wave Generation
,”
Phys. Fluids
,
6
, No.
1
, pp.
199
208
.
28.
Rosenfeld
,
M.
,
1995
, “
A Numerical Study of Pulsating Flow Behind a Constriction
,”
J. Fluid Mech.
,
301
, pp.
203
223
.
29.
Pedley
,
T. J.
, and
Stephanoff
,
K. D.
,
1985
, “
Flow Along a Channel With a Time-Dependent Indentation in One Wall: The Generation of Vorticity Waves
,”
J. Fluid Mech.
,
160
, pp.
337
367
.
30.
Chandran
,
K. B.
,
Cabell
,
G. N.
,
Khalighi
,
B.
, and
Chen
,
C. J.
,
1983
, “
Laser Anemometry of Pulsatile Flow Past Aortic Valve Prostheses
,”
J. Biomech.
,
18
, pp.
773
780
.
31.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
,
2000
, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
,
122
, pp.
1
10
.
32.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge.
33.
Yamaguchi
,
T.
,
Kikkaw
,
S.
,
Tanishita
,
K.
, and
Sugawara
,
M.
,
1988
, “
Spectrum Analysis of Turbulence in the Canine Ascending Aorta Measured with a Hot-Film Anemometer
,”
J. Biomech.
,
21
, pp.
489
495
.
You do not currently have access to this content.