Intravena caval respiratory support (or membrane oxygenation) is a potential therapy for patients with acute respiratory insufficiency. A respiratory support catheter is being developed that consists of a bundle of hollow fiber membranes with a centrally positioned pulsating balloon to enhance gas exchange. This study examined the influence of vessel compliance on the gas exchange performance of the pulsating respiratory support catheter. Polyurethane elastic tubes were fabricated with compliance comparable to that measured in bovine vena cava specimens. The gas exchange performance of the respiratory catheter was studied in an in-vitro flow loop using either the model compliant tube or a rigid tube as a “mock” vena cava. Balloon pulsation enhanced gas exchange comparably in both rigid and model compliant vessels up to 120 bpm pulsation frequency. Above 120 bpm gas exchange increased with further pulsation in the rigid tube, but no additional increase in gas exchange was seen in the compliant tube. The differences above 120 bpm may reflect differences in the compliance of the elastic tube versus the natural vena cava.

1.
Tao
,
W.
,
Zwischenberger
,
J. B.
,
Cox
,
C. S.
,
Graves
,
D.
, and
Bidani
,
A.
,
1998
, “
Intracorporeal Gas Exchange Taking Further Steps
,”
ASAIO J.
,
44
(
3
), pp.
224
226
.
2.
Zwischenberger, J. B., and Bartlett, R. H., 1995, ECMO Extracorporeal Support in Critical Care, Extracorporeal Life Support Organization.
3.
Hattler
,
B. G.
, and
Federspiel
,
W. J.
,
1999
, “
Progress with the Development of the Intravenous Membrane Oxygenator (MO)
,”
Perfusion
,
14
, pp.
311
315
.
4.
Rossi
,
N.
,
Kolobow
,
T.
,
Aprigliano
,
M.
,
Tsuno
,
K.
, and
Giacomini
,
M.
,
1998
, “
Intratracheal Pulmonary Ventilation at Low Airway Pressures in a Ventilator-Induced Model of Acute Respiratory Failure Improves Lung Function and Survival
,”
Chest
,
114
, pp.
1147
1157
.
5.
Hattler
,
B. G.
,
Gary
,
D. R.
,
Sawzik
,
P. J.
,
Lund
,
L. W.
,
Walters
,
F. R.
,
Shah
,
A. S.
,
Rawleigh
,
J.
,
Goode
,
J. S.
,
Klain
,
M.
, and
Borovetz
,
H. S.
,
1994
, “
Development of an Intravenous Membrane Oxygenator: Enhanced Intravenous Gas Exchange Through Convective Mixing of Blood Around Hollow Fiber Membranes
,”
Artif. Organs
,
18
, pp.
806
812
.
6.
Federspiel
,
W. J.
,
Hewitt
,
T.
,
Hout
,
M. S.
,
Walters
,
F. R.
,
Lund
,
L. W.
,
Sawzik
,
P. J.
,
Reeder
,
G.
,
Borovetz
,
H. S.
, and
Hattler
,
B. G.
,
1996
, “
Recent Progress in Engineering the Pittsburgh Intravenous Membrane Oxygenator
,”
ASAIO J.
,
42
(
5
), pp.
M435–M442
M435–M442
.
7.
Federspiel
,
W. J.
,
Golob
,
J. F.
,
Merrill
,
T. L.
,
Lund
,
L. W.
,
Bultman
,
J. A.
,
Frankowski
,
B. J.
,
Watach
,
M.
,
Litwak
,
K.
, and
Hattler
,
B. G.
,
2000
, “
Ex-vivo Testing of the Membrane Oxygenator
,”
ASAIO J.
,
46
, pp.
261
267
.
8.
Tao
,
W.
,
Zwischenberger
,
J. B.
,
Nguyen
,
T. T.
,
Tzouanakis
,
A. E.
,
Matheis
,
E. J.
,
Traber
,
D. L.
, and
Bidani
,
A.
,
1994
, “
Performance of an Intravenous Gas Exchanger (IVOX) in a Venovenous Bypass Circuit
,”
Annals of Thoracic Surgery
,
57
, pp.
1484
1491
.
9.
Von Segesser
,
L. K.
,
Tonz
,
M.
,
Mihaljevic
,
T.
,
Marty
,
B.
,
Leskosek
,
B.
, and
Turina
,
M.
,
1996
, “
Intravascular Oxygenation. Influence of the Host Vessel Diameter on Oxygen Transfer
,”
ASAIO J.
,
42
(
4
), pp.
246
249
.
10.
Sueda
,
T.
,
Fukunaga
,
S.
,
Morita
,
S.
,
Sueshiro
,
M.
,
Hirai
,
S.
,
Okada
,
K.
,
Orihashi
,
K.
, and
Matsuura
,
Y.
,
1997
, “
Development of an Intravascular Pumping Oxygenator Using a New Silicone Membrane
,”
Artif. Organs
,
21
, pp.
78
78
.
11.
Attinger
,
E. O.
,
1969
, “
Wall Properties of Veins
,”
IEEE Trans. Biomed. Eng.
,
16
, pp.
253
261
.
12.
Macha
,
M.
,
Federspiel
,
W. J.
,
Lund
,
L. W.
,
Sawzik
,
P. J.
,
Litwak
,
P.
,
Walters
,
F. R.
,
Reeder
,
G. D.
,
Borovetz
,
H. S.
, and
Hattler
,
B. G.
,
1996
, “
Acute In-Vivo Studies of the Pittsburgh Intravenous Membrane Oxygenator
,”
ASAIO J.
,
42
, pp.
M609–M615
M609–M615
.
13.
Golob, J. F., Federspiel, W. J., Merrill, T. L., Frankowski, B. J., Litwak, K., Russian, H., and Hattler, B. G., 2000, “Acute In-Vivo Testing of an Intravascular Respiratory Support Catheter,” ASAIO J., (In press).
14.
Ohhashi, T., Morimoto-Murase, K., and Kitoh, T., 1992, “Physiology and Functional Anatomy of the Venous System,” Veins: Their Functional Role in the Circulation, Springer-Verlag, New York, pp. 33–47.
15.
Walden
,
R.
,
L’Italien
,
G. J.
,
Megerman
,
J.
, and
Abbott
,
W. M.
,
1980
, “
Matched Elastic Properties and Successful Arterial Grafting
,”
Archives Surgery
,
115
, pp.
1166
1169
.
16.
Abbott, W. M., and Bouchier-Hayes, D. J., 1978, “The Role of Mechanical Properties in Graft Design,” Graft Materials in Vascular Surgery, Herbert Dardik, Chicago, pp. 59–78.
17.
Lye
,
C. R.
,
Summer
,
D. S.
, and
Strandness
,
D. E.
,
1975
, “
The Transcutaneous Measurement or the Elastic Properties of the Human Saphenous Vein Femoropopliteal Bypass Graft
,”
Surg. Gynecol. Obstet.
,
141
, pp.
891
895
.
18.
Duncan
,
D. D.
,
Bargeron
,
V. B.
,
Borchardt
,
S. E.
,
Deters
,
O. J.
,
Gearhart
,
S. A.
,
Mark
,
F. F.
, and
Friedman
,
M. H.
,
1990
, “
The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation
,”
ASME J. Biomech. Eng.
,
112
, pp.
183
188
.
19.
Benbrahim
,
A.
,
L’Italien
,
G. J.
,
Milinazzo
,
B. B.
,
Warnock
,
D. F.
,
Dhara
,
S.
,
Gertler
,
J. P.
,
Orkin
,
R. W.
, and
Abbott
,
W. M.
,
1994
, “
A Compliant Tubular Device to Study the Influence of Wall Strain and Fluid Shear Stress on Cells of the Vascular Wall
,”
J. Vasc. Surg.
,
20
, pp.
184
194
.
20.
Walker
,
R. D.
,
Smith
,
R. E.
,
Sheriff
,
S. B.
, and
Wood
,
R. F. M.
,
1999
, “
Latex Vessel with Customized Compliance for Use in Arterial Flow Model
,”
Physiological Measurement
,
20
, pp.
277
286
.
21.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Leonard
,
R. J.
,
1994
, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
,
40
, pp.
990
996
.
You do not currently have access to this content.