The tensile stress-strain behavior of ligaments and tendons begins with a toe region that is believed to result from the straightening of crimped collagen fibrils. The in situ mechanical function is mostly confined to this toe region and changes in crimp morphology are believed to be associated with pathological conditions. A relatively new imaging technique, optical coherence tomography (OCT), provides a comparatively inexpensive method for nondestructive investigation of tissue ultrastructure with resolution on the order of 15 μm and the potential for use in a clinical setting. The objectives of this work were to assess the utility of OCT for visualizing crimp period, and to use OCT to determine how crimp period changed as a function of applied tensile strain in rat tail tendon fascicles. Fascicles from rat tail tendons were subjected to 0.5 percent strain increments up to 5 percent and imaged at each increment using OCT. A comparison between OCT images and optical microscopy images taken between crossed polarizing lenses showed a visual correspondence between features indicative of crimp pattern. Crimp pattern always disappeared completely before 3 percent axial strain was reached. Average crimp period increased as strain increased, but both elongation and shortening occurred within single crimp periods during the application of increasing strain to the fascicle.

1.
Kastelic
,
J.
,
Galeski
,
A.
, and
Baer
,
E.
,
1978
, “
The Multicomposite Structure of Tendon
,”
Connective Tissue Research
,
6
, pp.
11
23
.
2.
Niven
,
H.
,
Baer
,
E.
, and
Hiltner
,
A.
,
1982
, “
Organization of Collagen Fibers in Rat Tail Tendon at the Optical Microscope Level
,”
Collagen Related Research
,
2
, pp.
131
142
.
3.
Rowe
,
R. W. D.
,
1985
, “
The Structure of Rat Tail Tendon
,”
Connective Tissue Research
,
14
, pp.
9
20
.
4.
Rowe
,
R. W. D.
,
1985
, “
The Structure of Rat Tail Tendon Fascicles
,”
Connective Tissue Research
,
14
, pp.
21
30
.
5.
Rigby
,
B. J.
,
Hirai
,
N.
,
Spikes
,
J. D.
, and
Eyring
,
H.
,
1959
, “
The Mechanical Properties of Rat Tail Tendon
,”
J. Gen. Physiol.
,
43
, pp.
265
289
.
6.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R. G. C.
,
1972
, “
Collagen; Ultrastructure and Its Relation to Mechanical Properties as a Function of Ageing
,”
Proc. R. Soc. London, Ser. B
,
180
, pp.
293
315
.
7.
Viidik
,
A.
,
Danielsen
,
C. C.
, and
Oxlund
,
H.
,
1982
, “
On Fundamental and Phenomenological Models, Structure and Mechanical Properties of Collagen, Elastin and Glycosaminoglycan Complexes
,”
Biorheology
,
19
, pp.
437
451
.
8.
Gathercole
,
L. J.
, and
Keller
,
A.
,
1991
, “
Crimp Morphology in the Fibre-Forming Collagens
,”
Matrix
,
11
, pp.
214
234
.
9.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. E.
,
1997
, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
,
25
, pp.
678
689
.
10.
Hsu
,
E. W.
,
Muzikant
,
A. L.
,
Matulevicius
,
S. A.
,
Penland
,
R. C.
, and
Henriquez
,
C. S.
,
1998
, “
Magnetic Resonance Myocardial Fiber-Orientation Mapping With Direct Histological Correlation
,”
Am. J. Physiol.
,
274
(
5
Pt 2), pp.
1627
1634
.
11.
Hsu
,
E. W.
, and
Setton
,
L. A.
,
1999
, “
Diffusion Tensor Microscopy of the Intervertebral Disc Annulus Fibrosus
,”
Magn. Reson. Med.
,
41
, pp.
992
999
.
12.
Caspers
,
P. J.
,
Lucassen
,
G. W.
,
Wolthuis
,
R.
,
Bruining
,
H. A.
, and
Puppels
,
G. J.
,
1998
, “
In Vitro and In Vivo Raman Spectroscopy of Human Skin
,”
Biospectroscopy
,
4
(
5
Suppl), pp.
31
39
.
13.
Huang
,
D.
,
Swanson
,
E. A.
,
Lin
,
C. P.
,
Schuman
,
J. S.
,
Stinson
,
W. G.
,
Chang
,
W.
,
Hee
,
M. R.
,
Flotte
,
T.
,
Gregory
,
K.
,
Puliafito
,
C. A.
et al.
,
1991
, “
Optical Coherence Tomography
,”
Science
,
254
(5035), pp.
1178
1181
.
14.
Schmitt
,
J. M.
,
Yadlowsky
,
M.
, and
Bonner
,
R. F.
,
1995
, “
Subsurface Imaging of Living Skin With Optical Coherence Microscopy
,”
Dermatology
,
191
, pp.
93
98
.
15.
Barton
,
J. K.
,
Milner
,
T. E.
,
Pfefer
,
T. J.
,
Nelson
,
J. S.
, and
Welch
,
A. J.
,
1997
, “
Optical Low-Coherence Reflectometry to Enhance Monte Carlo Modeling of Skin
,”
J. Biomed. Opt.
,
2
(
2
), pp.
226
234
.
16.
Brezinski
,
M. E.
,
Tearney
,
G. J.
,
Brett
,
B. E.
,
Boppart
,
S. A.
,
Hee
,
M. R.
,
Swanson
,
E. A.
,
Southern
,
J. F.
, and
Fujimoto
,
J. G.
,
1996
, “
Imaging of Coronary Artery Microstructure With Optical Coherence Tomography
,”
Am. J. Cardiol.
,
77
, pp.
92
93
.
17.
de Boer
,
J. F.
,
Milner
,
T. E.
,
van Gemert
,
M. J. C.
, and
Nelson
,
J. S.
,
1997
, “
Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography
,”
Opt. Lett.
,
22
, pp.
934
936
.
18.
Kwan
,
M. K.
, and
Woo
,
S. L-Y.
,
1989
, “
A Structural Model to Describe the Nonlinear Stress-Strain Behavior for Parallel-Fibered Collagenous Tissues
,”
ASME J. Biomech. Eng.
,
111
, pp.
361
363
.
19.
Hurschler
,
C.
,
Loitz-Ramage
,
B.
, and
Vanderby
, Jr.,
R.
,
1997
, “
A Structurally Based Stress-Stretch Relationship for Tendon and Ligament
,”
ASME J. Biomech. Eng.
,
119
, pp.
392
399
.
20.
Betsch
,
D. F.
, and
Baer
,
E.
,
1980
, “
Structure and Mechanical Properties of Rat Tail Tendon
,”
Biorheology
,
17
, pp.
83
94
.
21.
Price, J. P., Njus, G. O., and Conway, T. A., 1996, “Ultrastructural Properties of Rat Tail Tendon,” Proc., Fifteenth Southern Biomedical Engineering Conference, 456–459.
22.
Kastelic
,
J.
,
Palley
,
I.
, and
Baer
,
E.
,
1980
, “
A Structural Mechanical Model for Tendon Crimping
J. Biomech.
,
13
, pp.
887
893
.
23.
Drexler
,
W.
,
Morgner
,
U.
,
Kartner
,
F. X.
,
Pitris
,
C.
,
Boppart
,
S. A.
,
Li
,
X. D.
,
Ippen
,
E. P.
, and
Fujimoto
,
J. G.
,
1999
, “
In Vivo Ultrahigh-Resolution Optical Coherence Tomography
,”
Opt. Lett.
,
24
(
17
), pp.
1221
1223
.
You do not currently have access to this content.