Whereas bolus transport along the esophagus results from peristaltic contractions of the circular muscle layer, it has been suggested that local shortening of the longitudinal muscle layer concentrates circular muscle fibers in the region where the highest contractile pressures are required. Here we analyze the mechanical consequences of local longitudinal shortening (LLS) through a mathematical model based on lubrication theory. We find that local pressure and shear stress in the contraction zone are greatly reduced by the existence of LLS. In consequence, peak contractile pressure is reduced by nearly 2/3 at physiological LLS, and this reduction is greatest when peak in LLS is well aligned with peak contractile pressure. We conclude that a peristaltic wave of local longitudinal muscle contraction coordinated with the circular muscle contraction wave has both a great physiological advantage (concentrating circular muscle fibers), and a great mechanical advantage (reducing the level of contractile force required to transport the bolus), which combine to greatly reduce circular muscle tone during esophageal peristalsis.

1.
Brasseur
,
J. G.
, and
Dodds
,
W. J.
,
1991
, “
Interpretation of Interaluminal Manometric Measurements in Terms of Swallowing Mechanics
,”
Dysphagia
,
6
, pp.
100
119
.
2.
Dodds
,
W. J.
,
Stewart
,
E. T.
,
Hodges
,
D.
, and
Zboralske
,
F. F.
,
1972
, “
Movement of the Feline Esophagus Associated With Respiration and Peristalsis
,”
J. Clin. Invest.
,
52
, pp.
1
13
.
3.
Dusey, M., 1993. “Numerical Analysis of Lubrication Theory and Peristaltic Transport in the Esophagus,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
4.
Edmundowicz
,
S. A.
, and
Clouse
,
R. E.
,
1991
, “
Shortening of the Esophagus in Response to Swallowing
,”
Am. J. Physiol.
,
260
, pp.
G512–G516
G512–G516
.
5.
Jaffrin
,
M. Y.
,
1973
, “
Inertia and Streamline Curvature on Peristaltic Pumping
,”
Int. J. Eng. Sci.
,
11
, pp.
681
699
.
6.
Kahrilas
,
P. J.
,
Wu
,
S.
,
Lin
,
S.
, and
Pouderoux
,
P.
,
1995
, “
Attenuation of Esophageal Shortening During Peristalsis With Hiatus Hernia
,”
Gastroenterology
,
109
, pp.
1818
1825
.
7.
Li
,
M.
, and
Brasseur
,
J. G.
,
1993
, “
Nonsteady Peristaltic Transport in Finite length Tubes
,”
J. Fluid Mech.
,
248
, pp.
129
151
.
8.
Li
,
M.
,
Brasseur
,
J. G.
, and
Dodds
,
W. J.
,
1994
, “
Analyses of Normal and Abnormal Esophageal Transport Using Computer Simulations
,”
Am. J. Physiol.
,
266
, No.
29
, pp.
G525–G543
G525–G543
.
9.
Massey
,
B. T.
,
Gorny
,
J. M.
,
Kern
,
M. K.
,
Arndorfer
,
R. C.
,
Ryan
,
C.
, and
Hofmann
,
C.
,
1997
, “
Is Esophageal Longitudinal Muscle Function Affected by Deglutitive Inhibition?,” abstract
,
Dysphagia
,
12
, pp.
111
111
.
1.
Nicosia, M., 1997, “Muscle Mechanics and Modeling of the Esophagus During Swallowing;” Ph.D. thesis, Pennsylvania State University;
2.
University Park, PA.
1.
Nicosia
,
M.
,
Brasseur
,
J. G.
,
Liu
,
J.-B.
, and
Miller
,
L. S.
,
2001
, “
Local Longitudinal Muscle Shortening of the Human Esophagus From High-Frequency Ultrasonography
,”
Am. J. Physiol.
,
281
, pp.
G1022–G1033
G1022–G1033
.
2.
Pouderoux
,
P.
,
Lin
,
S.
, and
Kahrilas
,
P. J.
,
1997
, “
Timing, Propagation, Coordination, and Effect of Esophageal Shortening During Peristalsis
,”
Gastroenterology
,
112
, pp.
1147
1154
.
3.
Sugarbaker
,
D. J.
,
Rattan
,
S.
, and
Goyal
,
R. K.
,
1984
, “
Swallowing Induces Sequential Activation of Esophageal Longitudinal Smooth Muscle
,”
Am. J. Physiol.
,
247
, pp.
G515–G519
G515–G519
.
You do not currently have access to this content.