Cellular response to mechanical loading varies between the anatomic zones of the intervertebral disc. This difference may be related to differences in the structure and mechanics of both cells and extracellular matrix, which are expected to cause differences in the physical stimuli (such as pressure, stress, and strain) in the cellular micromechanical environment. In this study, a finite element model was developed that was capable of describing the cell micromechanical environment in the intervertebral disc. The model was capable of describing a number of important mechanical phenomena: flow-dependent viscoelasticity using the biphasic theory for soft tissues; finite deformation effects using a hyperelastic constitutive law for the solid phase; and material anisotropy by including a fiber-reinforced continuum law in the hyperelastic strain energy function. To construct accurate finite element meshes, the in situ geometry of IVD cells were measured experimentally using laser scanning confocal microscopy and three-dimensional reconstruction techniques. The model predicted that the cellular micromechanical environment varies dramatically between the anatomic zones, with larger cellular strains predicted in the anisotropic anulus fibrosus and transition zone compared to the isotropic nucleus pulposus. These results suggest that deformation related stimuli may dominate for anulus fibrosus and transition zone cells, while hydrostatic pressurization may dominate in the nucleus pulposus. Furthermore, the model predicted that micromechanical environment is strongly influenced by cell geometry, suggesting that the geometry of IVD cells in situ may be an adaptation to reduce cellular strains during tissue loading.

1.
Oegema
,
T. R.
, Jr.
,
1993
, “
Biochemistry of the Intervertebral Disc
,”
Clin. Sports Med.
,
12
, pp.
419
439
.
2.
Urban, J. P. G., 1993, “The Effect of Physical Factors on Disc Cell Metabolism,” Musculoskeletal Soft-Tissue Aging: Impact on Mobility, J. A. Buckwalter et al., eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 391–412.
3.
Weidenbaum, M., Iatridis, J. C., Setton, L. A., Foster, R. J., and Mow, V. C., 1996, “Mechanical Behavior of the Intervertebral Disc and the Effects of Degeneration,” Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein et al., eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 557–582.
4.
Hutton
,
W. C.
,
Toribatake
,
Y.
,
Elmer
,
W. A.
,
Ganey
,
T. M.
,
Tomita
,
K.
, and
Whitesides
,
T. E.
,
1998
, “
The Effect of Compressive Force Applied to the Intervertebral Disc In Vivo: A Study of Proteoglycans and Collagen
,”
Spine
,
23
, pp.
2524
2537
.
5.
Iatridis
,
J. C.
,
Mente
,
P. L.
,
Stokes
,
I. A. F.
,
Aronsson
,
D. D.
, and
Alini
,
M.
,
1999
, “
Compression-induced Changes in Intervertebral Disc Properties in a Rat Tail Model
,”
Spine
,
24
, pp.
996
1002
.
6.
Lotz
,
J. C.
,
Colliou
,
O. K.
,
Chin
,
J. R.
,
Duncan
,
N. A.
, and
Liebenberg
,
E.
,
1998
, “
Compression-induced Degeneration of the Intervertebral Disc: An In Vivo Mouse Model and Finite Element Study
,”
Spine
,
23
, pp.
2493
2506
.
7.
Ohshima
,
H.
,
Urban
,
J. P. G.
, and
Bergel
,
D. H.
,
1995
, “
Effect of Static Load on Matrix Synthesis Rates in the Intervertebral Disc Measured In Vitro by a New Perfusion Technique
,”
J. Orthop. Res.
,
13
, pp.
22
29
.
8.
Baer
,
A. E.
,
Wang
,
J. Y.
,
Kraus
,
V. B.
, and
Setton
,
L. A.
,
2000
, “
Changes in Aggrecan and Collagen Gene Expression in Anulus Fibrosus Cells Subjected to Static Compression In Vitro
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
25
, p.
336
336
.
9.
Chen
,
J.
,
Paik
,
P. Y.
,
Baer
,
A. E.
, and
Setton
,
L. A.
,
2001
, “
Static Compression Effects on Cytoskeletal Gene Expression for Cells of the Intervertebral Disc
,”
Ann. Biomed. Eng.
,
29 S1
, p.
3.9.6
3.9.6
.
10.
Handa
,
T.
,
Ishihara
,
H.
,
Ohshima
,
H.
,
Osada
,
R.
,
Tsuji
,
H.
, and
Obata
,
K.
,
1997
, “
Effects of Hydrostatic Pressure on Matrix Synthesis and Matrix Metalloproteinase Production in the Human Lumbar Intervertebral Disc
,”
Spine
,
22
, pp.
1085
1091
.
11.
Hutton
,
W. C.
,
Elmer
,
W. A.
,
Boden
,
S. D.
,
Hyon
,
S.
,
Toribatake
,
Y.
,
Tomita
,
K.
, and
Hair
,
G. A.
,
1999
, “
The Effect of Hydrostatic Pressure on Intervertebral Disc Metabolism
,”
Spine
,
24
, pp.
1507
1515
.
12.
Ishihara
,
H.
,
McNally
,
D. S.
,
Urban
,
J. P. G.
, and
Hall
,
A. C.
,
1996
, “
Effects of Hydrostatic Pressure on Matrix Synthesis in Different Regions of the Intervertebral Disc
,”
J. Appl. Physiol.
,
80
, pp.
839
846
.
13.
Liu
,
G.-Z.
,
Ishihara
,
H.
,
Osada
,
R.
,
Kimura
,
T.
, and
Tsuji
,
H.
,
2001
, “
Nitric Oxide Mediates the Change of Proteoglycan Synthesis in the Human Lumbar Intervertebral Disc in Response to Hydrostatic Pressure
,”
Spine
,
26
, pp.
134
141
.
14.
Matsumoto
,
T.
,
Kawakami
,
M.
,
Kuribayashi
,
K.
,
Takenaka
,
T.
, and
Tamaki
,
T.
,
1999
, “
Cyclic Mechanical Stretch Stress Increases the Growth Rate and Collegen Synthesis of Nucleus Pulposus Cells in Vitro
,”
Spine
,
24
, pp.
315
319
.
15.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
, pp.
75
88
.
16.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
, pp.
402
410
.
17.
Bruehlmann
,
S. B.
,
Hulme
,
P. A.
, and
Duncan
,
N. A.
,
2001
, “
Intercellular Strain in the Outer Anulus Subjected to Biaxial Tension is Nonuniform and is Affected by Lamellar Layers
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
26
, p.
882
882
.
18.
Errington
,
R. J.
,
Puustjarvi
,
K.
,
White
,
I. R. F.
,
Roberts
,
S.
, and
Urban
,
J. P. G.
,
1998
, “
Characterization of Cytoplasm-filled Processes in Cells of the Intervertebral Disc
,”
J. Anat.
,
192
, pp.
369
378
.
19.
Higuchi
,
M.
, and
Abe
,
K.
,
1987
, “
Postmortem Changes in Ultrastructures of the Mouse Intervertebral Disc
,”
Spine
,
12
, pp.
48
52
.
20.
Postacchini
,
F.
,
Bellocci
,
M.
, and
Massobrio
,
M.
,
1984
, “
Morphologic Changes in Anulus Fibrosus During Aging: An Ultrastructural Study in Rats
,”
Spine
,
9
, pp.
596
603
.
21.
Taylor, J. R., and Twomey, L. T., 1988, “The Development of the Human Intervertebral Disc,” The Biology of the Intervertebral Disc, P. Ghosh, ed., CRC Press, Boca Raton, FL, 1, pp. 39–82.
22.
Trout
,
J. J.
,
Buckwalter
,
J. A.
,
Moore
,
K. C.
, and
Landas
,
S. K.
,
1982
, “
Ultrastructure of the Human Intervertebral Disc: I. Changes in Notochordal Cells with Age
,”
Tissue Cell
,
14
, pp.
359
369
.
23.
Guilak
,
F.
,
Ting-Beall
,
H. P.
,
Baer
,
A. E.
,
Trickey
,
W. R.
,
Erickson
,
G. R.
, and
Setton
,
L. A.
,
1999
, “
Viscoelastic Properties of Intervertebral Disc Cells: Identification of Two Biomechanically Distinct Cell Populations
,”
Spine
,
24
, pp.
2475
2483
.
24.
Bachrach
,
N. M.
,
Valhmu
,
W. B.
,
Stazzone
,
E.
,
Ratcliffe
,
A.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1995
, “
Changes in Proteoglycan Synthesis of Chondrocytes in Articular Cartilage are Associated With the Time-dependent Changes in Their Mechanical Environment
,”
J. Biomech.
,
28
, pp.
1561
1569
.
25.
Baer
,
A. E.
, and
Setton
,
L. A.
,
2000
, “
The Mechanical Environment of Intervertebral Disc Cells: Effect of Matrix Anisotropy and Cell Geometry Predicted by a Linear Model
,”
J. Biomech. Eng.
,
122
, pp.
245
251
.
26.
Freeman
,
P. M.
,
Natarajan
,
R. N.
,
Kimura
,
J. H.
, and
Andriacchi
,
T. P.
,
1994
, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
,
12
, pp.
311
320
.
27.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
, pp.
1663
1673
.
28.
Jain
,
M. K.
,
Berg
,
R. A.
, and
Tandon
,
G. P.
,
1990
, “
Mechanical Stress and Cellular Metabolism in Living Soft Tissue Composites
,”
Biomaterials
,
11
, pp.
465
472
.
29.
Lai
,
W. M.
,
Sun
,
D. D.
,
Ateshian
,
G. A.
,
Guo
,
X. E.
, and
Mow
,
V. C.
,
2002
, “
Electrical Signals for Chondrocytes in Cartilage
,”
Biorheology
,
39
, pp.
39
45
.
30.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1999
, “
Modelling of Location- and Time-dependent Deformation of Chondrocytes During Cartilage Loading
,”
J. Biomech.
,
32
, pp.
563
572
.
31.
Haugland, R. P., 1996, Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, OR.
32.
Guilak
,
F.
,
1994
, “
Volume and Surface Area Measurement of Viable Chondrocytes In Situ Using Geometric Modelling of Serial Confocal Sections
,”
J. Microsc.
,
173
, pp.
245
256
.
33.
Feddema, J. T., and Little, C. Q., 1997, “Rapid World Modeling: Fitting Range Data to Geometric Primitives,” Proceedings of the IEEE International Conference on Robotics and Automation, 4, pp. 2807–2812.
34.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
35.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
36.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues: I. Equilibrium Results
,”
J. Biomech.
,
23
, pp.
145
155
.
37.
Spencer, A. J. M., 1984, “Constitutive Theory for Strongly Anisotropic Solids,” Continuum Theory of the Mechanics of Fibre-Reinforced Composites, A. J. M. Spencer, ed., Springer Verlag, Wien, pp. 1–32.
38.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
J. Biomech. Eng.
,
120
, pp.
757
763
.
39.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2000
, “
A Linear Material Model for Fiber-induced Anisotropy of the Anulus Fibrosus
,”
J. Biomech. Eng.
,
122
, pp.
173
179
.
40.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Mechanics of the Human Anulus Fibrosus Predicted by a Fiber-induced Anisotropic Model
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
26
, p.
77
77
.
41.
Humphrey
,
J. D.
, and
Yin
,
F. C. P.
,
1987
, “
A New Constitutive Formulation for Characterizing the Mechanical Behavior of Soft Tissues
,”
Biophys. J.
,
52
, pp.
563
570
.
42.
Wayne
,
J. S.
,
Woo
,
S. L.
, and
Kwan
,
M. K.
,
1991
, “
Application of the u-p Finite Element Method to the Study of Articular Cartilage
,”
J. Biomech. Eng.
,
113
, pp.
397
403
.
43.
Meng
,
X. N.
,
LeRoux
,
M. A.
,
Laursen
,
T. A.
, and
Setton
,
L. A.
,
2002
, “
A Nonlinear Finite Element Formulation for Axisymmetric Torsion of Biphasic Materials
,”
Int. J. Solids Struct.
,
39
, pp.
879
895
.
44.
Stokes
,
I. A. F.
,
1987
, “
Surface Strain on Human Intervertebral Discs
,”
J. Orthop. Res.
,
5
, pp.
348
355
.
45.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
,
2000
, “
Viscoelastic Properties of Chondrocytes from Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
,
18
, pp.
891
898
.
46.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Saed-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1994
, “
Compressive Mechanical Properties of the Human Anulus Fibrosus and their Relationship to Biochemical Composition
,”
Spine
,
19
, pp.
212
221
.
47.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Anulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
, pp.
814
819
.
48.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Anulus Fibrosus
,”
J. Orthop. Res.
,
17
, pp.
732
737
.
49.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
, pp.
535
544
.
50.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1997
, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus with Degeneration and Aging
,”
J. Orthop. Res.
,
15
, pp.
318
322
.
51.
Elliott, D. M., and Setton, L. A., 1999, “Direct Measurement of a Complete Set of Orthotropic Material Properties for the Human Anulus Fibrosus in Tension,” Proceedings of the 1999 Bioengineering Conference, V. K. Goel et al., eds., American Society of Mechanical Engineers, New York, BED-42, pp. 75–76.
52.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
, pp.
1310
1319
.
53.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus: Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
, pp.
2449
2455
.
54.
Butler
,
W. F.
, and
Fujioka
,
T.
,
1972
, “
Fine Structure of the Nucleus Pulposus of the Intervertebral Disc of the Cat
,”
Anat. Anz
,
132
, pp.
465
475
.
55.
Higuchi
,
M.
,
Kaneda
,
K.
, and
Abe
,
K.
,
1982
, “
Age-related Changes in the Nucleus Pulposus of Intervertebral Disc in Mice: An Electron Microscopic Study
,”
Nippon Seikeigeka Gakkai Zasshi
,
56
, pp.
321
329
.
56.
Meachim
,
G.
, and
Cornah
,
M. S.
,
1970
, “
Fine Structure of Juvenile Human Nucleus Pulposus
,”
J. Anat.
,
107
, pp.
337
350
.
57.
Eshelby, J. D., 1957, “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proceedings of the Royal Society of London, Part A, 241, pp. 376–396.
58.
Guilak, F., and Mow, V. C., 1992, “Determination of the Mechanical Response of the Chondrocyte In Situ Using Finite Element Modeling and Confocal Microscopy,” Advances in Bioengineering, M. W. Bidez, ed., American Society of Mechanical Engineers, New York, BED-22, pp. 21–23.
59.
McNally
,
D. S.
, and
Adams
,
M. A.
,
1992
, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
,
17
, pp.
66
73
.
60.
Nachemson
,
A.
,
1960
, “
Lumbar Intradiscal Pressure: Experimental Studies on Post-mortem Material
,”
Acta Orthop. Scand.
, Supplementum
43
, pp.
1
103
.
61.
Nachemson, A., 1992, “Lumbar Mechanics as Revealed by Lumbar Intradiscal Pressure Measurements,” The Lumbar Spine and Back Pain, M. I. V. Jayson, ed., Churchill Livingstone, Edinburgh, pp. 157–171.
62.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
,
2000
, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
,
269
, pp.
781
786
.
63.
Sato
,
M.
,
Nagayama
,
K.
,
Kataoka
,
N.
,
Sasaki
,
M.
, and
Hane
,
K.
,
2000
, “
Local Mechanical Properties Measured by Atomic Force Microscopy for Cultured Bovine Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
33
, pp.
127
135
.
64.
Lang
,
F.
,
Busch
,
G. L.
,
Ritter
,
M.
,
Vo¨lkl
,
H.
,
Waldegger
,
S.
,
Gulbins
,
E.
, and
Ha¨ussinger
,
D.
,
1998
, “
Functional Significance of Cell Volume Regulatory Mechanisms
,”
Physiol. Rev.
,
78
, pp.
247
306
.
65.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, V. C. Mow et al., eds., Lippincott-Raven Publishers, Philadelphia, pp. 179–207.
66.
Ishihara
,
H.
,
Warensjo
,
K.
,
Roberts
,
S.
, and
Urban
,
J. P. G.
,
1997
, “
Proteoglycan Synthesis in the Intervertebral Disc Nucleus: The Role of Extracellular Osmolality
,”
Am. J. Physiol.
,
272
, pp.
C1499–C1506
C1499–C1506
.
67.
Erickson
,
G. R.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
,
2001
, “
Hyper-osmotic Stress Induces Volume Change and Calcium Transients in Chondrocytes by Transmembrane, Phospholipid, and G-protein Pathways
,”
J. Biomech.
,
34
, pp.
1527
1535
.
68.
Erickson
,
G. R.
,
Caribardi
,
A.
, and
Guilak
,
F.
,
2000
, “
Calcium Dependent and Independent Volume Regulation in Articular Chondrocytes
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
25
, p.
922
922
.
69.
Errington
,
R. J.
,
Fricker
,
M. D.
,
Wood
,
J. L.
,
Hall
,
A. C.
, and
White
,
N. S.
,
1997
, “
Four-dimensional Imaging of Living Chondrocytes in Cartilage Using Confocal Microscopy: A Pragmatic Approach
,”
Am. J. Physiol.
,
272
, pp.
C1040–C1051
C1040–C1051
.
70.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2000
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
J. Biomech. Eng.
,
123
, pp.
256
263
.
71.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
,
2002
, “
Direct Measurement of the Poisson’s Ratio of Human Articular Cartilage in Tension: The Effects of Depth, Age and Degeneration
,”
J. Biomech. Eng.
,
124
, pp.
223
228
.
72.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
,
Flatow
,
E. L.
,
Bigliani
,
L. U.
, and
Mow
,
V. C.
,
1999
, “
Anisotropy, Inhomogeneity, and Tension-compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
24
, p.
95
95
.
73.
LeRoux
,
M. A.
,
Ateshian
,
G. A.
,
Vail
,
T. P.
, and
Setton
,
L. A.
,
2001
, “
Effects of Collagen Fiber Anisotropy on the Hydraulic Permeability of the Meniscus
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
26
, p.
45
45
.
74.
Cohen, B., 1992, “Anisotropic Hydrated Soft Tissues in Finite Deformation and the Biomechanics of the growth plate,” Ph.D. thesis, Columbia University, New York, NY.
75.
Klisch
,
S. M.
, and
Lotz
,
J. C.
,
1999
, “
Application of a Fiber-reinforced Continuum Theory to Multiple Deformations of the Anulus Fibrosus
,”
J. Biomech.
,
32
, pp.
1027
1036
.
76.
Buckwalter
,
J. A.
,
1995
, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
,
20
, pp.
1307
1314
.
77.
Peacock
,
A.
,
1951
, “
Observations on the Post-natal Structure of the Intervertebral Disc in Man
,”
J. Anat.
,
86
, pp.
162
179
.
78.
Rufai
,
A.
,
Benjamin
,
M.
, and
Ralphs
,
J. R.
,
1995
, “
The Development of Fibrocartilage in the Rat Intervertebral Disc
,”
Anat. Embryol.
,
192
, pp.
53
62
.
You do not currently have access to this content.