To explore the hypothesis that load-induced fluid flow in bone is a mechano-transduction mechanism in bone adaptation, unit cell micro-mechanical techniques are used to relate the microstructure of Haversian cortical bone to its effective poroelastic properties. Computational poroelastic models are then applied to compute in vitro Haversian fluid flows in a prismatic specimen of cortical bone during harmonic bending excitations over the frequency range of 100 to 106Hz. At each frequency considered, the steady state harmonic response of the poroelastic bone specimen is computed using complex frequency-domain finite element analysis. At the higher frequencies considered, the breakdown of Poisueille flow in Haversian canals is modeled by introduction of a complex fluid viscosity. Peak bone fluid pressures are found to increase linearly with loading frequency in proportion to peak bone stress up to frequencies of approximately 10 kHz. Haversian fluid shear stresses are found to increase linearly with excitation frequency and loading magnitude up until the breakdown of Poisueille flow. Tan δ values associated with the energy dissipated by load-induced fluid flow are also compared with values measured experimentally in a concurrent broadband spectral analysis of bone. The computational models indicate that fluid shear stresses and fluid pressures in the Haversian system could, under physiologically realistic loading, easily reach the level of a few Pascals, which have been shown in other works to elicit cell responses in vitro.

1.
Burger
,
E. H.
,
Klein-Nulend
,
J.
,
van der Plas
,
A.
, and
Nijweide
,
P. J.
,
1995
, “
Function of Osteocytes in Bone–Their Role in Mechanotransduction
,”
J. Nutr.
,
125
, pp.
2020S–2023S
2020S–2023S
.
2.
Cowin
,
S. C.
,
Moss-Salentijn
,
L.
, and
Moss
,
M. L.
,
1991
, “
Candidates for the Mechanosensory System in Bone
,”
J. Biomech. Eng.
,
113
, pp.
191
197
.
3.
Rubin
,
C. T.
, and
McLeod
,
K. J.
,
1994
, “
Promotion of Bony Ingrowth by Frequency-Specific, Low-Amplitude Mechanical Strain
,”
Clin. Orthop.
,
298
, pp.
165
174
.
4.
Qin
,
Y. X.
,
McLeod
,
K. J.
,
Guilak
,
F.
,
Chiang
,
F. P.
, and
Rubin
,
C. T.
,
1996
, “
Correlation of Bony Ingrowth to the Distribution of Stress and Strain Parameters Surrounding a Porous-coated Implant
,”
J. Orthop. Res.
,
14
, pp.
862
870
.
5.
Wolff, J., 1892, “Das Gezetz der Transformation der Knochen,” Verlag von August Hirschwald, Berlin.
6.
Glu¨cksman
,
A.
,
1939
, “
Studies on Bone Mechanics In Vitro: II. The Role of Tension and Pressure in Chondrogenesis
,”
J. Anat.
,
73
, pp.
39
55
.
7.
Frost
,
H. M.
,
1966
, “
Bone as a Physiological Tool
,”
Henry Ford Hosp. Med. J.
,
14
, pp.
63
70
.
8.
Lanyon
,
L. E.
, and
Smith
,
R. N.
,
1970
, “
Bone Strain in the Tibia During Normal Quadrupedal Locomotion
,”
Acta Orthop. Scand.
41
, pp.
238
248
.
9.
Chamay
,
A.
, and
Tschantz
,
P.
,
1972
, “
Mechanical Influences in Bone Remodeling. Experimental Research on Wolff’s law
,”
J. Biomech.
,
5
, pp.
173
180
.
10.
Hassler
,
C. R.
,
Rybicki
,
E. F.
,
Cummings
,
K. D.
, and
Clark
,
L. C.
,
1977
, “
Quantitation of Compressive Stress and its Effects Upon Bone Remodeling [proceedings]
,”
Bull Hosp. Jt. Dis.
38
, pp.
90
93
.
11.
Lanyon
,
L. E.
, and
Bourn
,
S.
,
1979
, “
The Influence of Mechanical Function on the Development and Remodeling of the Tibia. An Experimental Study in Sheep
,”
J. Bone Jt. Surg., Am. Vol.
,
61
, pp.
263
273
.
12.
Frost
,
H. M.
,
1982
, “
Mechanical Determinants of Bone Modeling
,”
Metab. Bone Dis. Relat. Res.
,
4
, pp.
217
229
.
13.
Lanyon
,
L. E.
,
Goodship
,
A. E.
,
Pye
,
C. J.
, and
MacFie
,
J. H.
,
1982
, “
Mechanically Adaptive Bone Remodelling
,”
J. Biomech.
,
15
, pp.
141
154
.
14.
Rubin
,
C. T.
, and
Lanyon
,
L. E.
,
1984
, “
Regulation of Bone Formation by Applied Dynamic Loads
,”
J. Bone Jt. Surg., Am. Vol.
,
66
, pp.
397
402
.
15.
Carter
,
D. R.
,
Fyhrie
,
D. P.
, and
Whalen
,
R. T.
,
1987
, “
Trabecular Bone Density and Loading History: Regulation of Connective Tissue Biology by Mechanical Energy
,”
J. Biomech.
,
20
, pp.
785
794
.
16.
Yasuda
,
L.
, 1954, “On the Piezoelectric Activity of Bone,” J Jpn Orthop Surg Soc, 28, pp. 267.
17.
Fukada
,
E.
, and
Yasuda
,
L.
, 1957, “On the Piezoelectric Effect of Bone,” J. Phyiol. Soc. Jpn., 12, p. 1158.
18.
Bassett
,
C. A. L.
, and
Becker
,
R. O.
,
1962
, “
Generation of Electric Potentials in Bone in Response to Mechanical Stress
,”
Science
,
137
, pp.
1063
1064
.
19.
Piekarski
,
K.
, and
Munro
,
M.
,
1977
, “
Transport Mechanism Operating Between Blood Supply and Osteocytes in Long Bones
,”
Nature (London)
,
269
, pp.
80
82
.
20.
Iannacone
,
W.
,
Korostoff
,
E.
, and
Pollack
,
S. R.
,
1979
, “
Microelectrode Study of Stress-Generated Potentials Obtained from Uniform and Nonuniform Compression of Human Bone
,”
J. Biomed. Mater. Res.
,
13
, pp.
753
763
.
21.
Starkebaum
,
W.
,
Pollack
,
S. R.
, and
Korostoff
,
E.
,
1979
, “
Microelectrode Studies of Stress-Generated Potentials in Four-point Bending of Bone
,”
J. Biomed. Mater. Res.
,
13
, pp.
729
751
.
22.
Salzstein
,
R. A.
,
Pollack
,
S. R.
,
Mak
,
A. F. T.
, and
Petrov
,
N.
,
1987
, “
Electromechanical Potentials in Cortical Bone—I. A Continuum Approach
,”
J. Biomech.
,
20-3
, pp.
261
270
.
23.
Salzstein
,
R. A.
, and
Pollack
,
S. R.
,
1987
Electromechanical Potentials in Cortical Bone—II. Experimental Analysis
,”
J. Biomech.
,
20-3
, pp.
271
280
.
24.
Weinbaum
,
S.
,
Cowin
,
S. C.
, and
Zeng
,
Y.
,
1994
, “
A Model for the Excitation of Osteocytes by Mechanical Loading-Induced Bone Fluid Shear Stresses
,
J. Biomech.
,
27
, pp.
339
360
.
25.
Jacobs
,
C. R.
,
Yellowley
,
C. E.
,
Davis
,
B. R.
,
Zhou
,
Z.
,
Cimbala
,
J. M.
, and
Donahue
,
H. J.
,
1998
, “
Differential Effect of Steady Versus Oscillating Flow on Bone Cells
,”
J. Biomech.
,
31
, pp.
969
976
.
26.
Zhang
,
D.
,
Weinbaum
,
S.
, and
Cowin
,
S. C.
,
1998
, “
Estimates of the Peak Pressures in Bone Pore Water
,”
J. Biomech. Eng.
,
120
, pp.
697
703
.
27.
Zhang
,
D.
,
Weinbaum
,
S.
, and
Cowin
,
S. C.
,
1998
, “
On the Calculation of Bone Pore Water Pressure Due to Mechanical Loading
,”
Int. J. Solids Struct.
,
35
, pp.
4981
4997
.
28.
Cooper
,
R. R.
,
Milgram
,
J. W.
, and
Robinson
,
R. A.
,
1966
, “
Morphology of the Osteon. An Electron Microscopic Study
,”
J. Bone Jt. Surg., Am. Vol.
,
48
, pp.
1239
1271
.
29.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
30.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28-2
, pp.
179
191
.
31.
Biot
,
M. A.
, and
Willis
,
D. G.
,
1957
, “
The Elastic Coefficients of the Theory of Consolidation
,”
J. Appl. Mech.
,
24
, pp.
594
601
.
32.
Guedes
,
J.
, and
Kikuchi
,
N.
,
1991
, “
Preprocessing and Postprocessing for Materials Based on Homogenization Method and Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
, pp.
143
198
.
33.
Suquet, P., 1987, “Elements of Homogenization for Inelastic Solid Mechanics,” in Homogenization Techniques for Composite Media, Sanchez-Palencia, E., and Zaoui, A. (Eds.), Springer-Verlag, pp. 193–278.
34.
Swan
,
C. C.
,
1994
, “
Techniques for Stress- and Strain-Controlled Homogenization of Inelastic Periodic Composites
,”
Comput. Methods Appl. Mech. Eng.
,
117
, pp.
249
267
.
35.
Abramowitz, M., and Stegun, I. E., 1964, Handbook of Mathematical Functions, National Bureau of Standards, U.S. Department of Commerce.
36.
Scheidegger, A. E., 1957, The Physics of Flow Through Porous Media, MacMillan, New York.
37.
Stewart, K. J., 2000, Deformation Induced Fluid Flow as a Mechanism of Bone Adaptation, M.S. Thesis, The University of Iowa, Iowa City.
38.
Ferry, J. D., 1980, Viscoelastic Properties of Polymers, Wiley, New York.
39.
Cowin
,
S. C.
,
Weinbaum
,
S.
, and
Zeng
,
Y.
,
1995
, “
A Case for Bone Canaliculi as the Atomical Site of Strain Generated Potentials
,”
J. Biomech.
,
28
, pp.
1281
1297
.
40.
Garner
,
E.
,
Lakes
,
R.
,
Lee
,
T.
,
Swan
,
C.
, and
Brand
,
R.
,
2000
, “
Viscoelastic Dissipation in Compact Bone: Implications for Stress-Induced Fluid Flow in Bone
,”
J. Biomech. Eng.
,
122
, pp.
166
172
.
41.
Buechner
,
P. M.
,
Lakes
,
R. S.
,
Swan
,
C.
, and
Brand
,
R. A.
,
2001
, “
A Broadband Viscoelastic Spectroscopic Study of Bovine Bone: Implications for Fluid Flow
,”
Ann. Biomed. Eng.
,
29
, pp.
719
728
.
42.
Rouhana, S. W., Johnson, M. W., Chakkalakal, D. A., Harper, R. A., and Katz, J. L., 1981, “Permeability of Compact Bone.” Joint ASME-ASCE Conference. AMD, 169–172.
43.
Cohen
,
J.
, and
Harris
,
W. H.
,
1958
, “
The Three-Dimensional Anatomy of Haversian Systems
,”
J. Bone Jt. Surg., Am. Vol.
,
40
, pp.
419
434
.
44.
Baltadzhiev
,
G.
,
1994
, “
Morphology of the Haversian Canal. An Electron Microscopic Study
,”
Folia Med. (Plovdiv)
,
36
, pp.
21
28
.
45.
Hert
,
J.
,
Fiala
,
P.
, and
Petrtyl
,
M.
,
1994
, “
Osteon Orientation of the Diaphysis of the Long Bones in Man
,”
Bone (N.Y.)
,
15
, pp.
269
277
.
46.
Petrtyl
,
M.
,
Hert
,
J.
, and
Fiala
,
P.
,
1996
, “
Spatial Organization of the Haversian Bone in Man
,”
J. Biomech.
,
29
, pp.
161
169
.
47.
Martin, R. B., and Burr, D. B., 1989, Structure, Function, and Adaptation of Compact Bone, Raven Press, New York.
48.
Tappen
,
N. C.
,
1982
, “
The Orientation and Spatial Interrelationships of Osteons in Long Bones
,”
Anat. Rec.
,
202
, p.
187A
187A
.
49.
Koltze
,
H.
,
1951
, “
Studie sur ausseren Form der Osteone
,”
Z. Anat. Entwicklungsgesch
,
115
, pp.
584
596
.
50.
Gaillard
,
P. J.
,
Herrmann-Erlee
,
M. P.
,
Hekkelman
,
J. W.
,
Burger
,
E. H.
, and
Nijweide
,
P. J.
,
1979
, “
Skeletal Tissue in Culture. Hormonal Regulation of Metabolism and Development
,”
Clin. Orthop.
,
142
, pp.
196
214
.
51.
Nijweide
,
P. J.
,
Burger
,
E. H.
, and
Feyen
,
J. H.
,
1986
, “
Cells of Bone: Proliferation, Differentiation, and Hormonal Regulation
,”
Physiol. Rev.
,
66
, pp.
855
886
.
52.
Turner
,
C. H.
,
1999
, “
Toward a Mathematical Description of Bone Biology: The Principle of Cellular Accommodation
,”
Calcif. Tissue Int.
,
65
, pp.
466
471
.
53.
Lanyon
,
L. E.
,
1992
, “
The Success and Failure of the Adaptive Response to Functional Load-bearing in Averting Bone Fracture
,”
Bone (N.Y.)
,
13
, pp.
17
21
.
54.
Dieudonne
,
S. C.
,
Semeins
,
C. M.
,
Goei
,
S. W.
,
Vukicevic
,
S.
,
Nulend
,
J. K.
,
Sampath
,
T. K.
,
Helder
,
M.
, and
Burger
,
E. H.
,
1994
, “
Opposite Effects of Osteogenic Protein and Transforming Growth Factor Beta on Chondrogenesis in Cultured Long Bone Rudiments
,”
J. Bone Miner. Res.
,
9
, pp.
771
780
.
55.
Klein-Nulend
,
J.
,
Semeins
,
C. M.
,
Veldhuijzen
,
J. P.
, and
Burger
,
E. H.
,
1993
, “
Effect of Mechanical Stimulation on the Production of Soluble Bone Factors in Cultured Fetal Mouse Calvariae
,”
Cell Tissue Res.
,
271
, pp.
513
517
.
56.
Salter
,
D. M.
,
Wallace
,
W. H.
,
Robb
,
J. E.
,
Caldwell
,
H.
, and
Wright
,
M. O.
,
2000
, “
Human Bone Cell Hyperpolarization Response to Cyclical Mechanical Strain is Mediated by an Interleukin-1 Beta Autocrine/Paracrine Loop [In Process Citation]
,”
J. Bone Miner. Res.
,
15
, pp.
1746
1755
[MEDLINE record in process].
57.
Skerry
,
T. M.
,
1999
, “
Identification of Novel Signaling Pathways During Functional Adaptation of the Skeleton to Mechanical Loading: The Role of Glutamate as a Paracrine Signaling Agent in the Skeleton
,”
J Bone Miner Metab
,
17
, pp.
66
70
.
58.
Sterck
,
J. G.
,
Klein-Nulend
,
J.
,
Burger
,
E. H.
, and
Lips
,
P.
,
1996
, “
1,25-dihydroxyvitamin D3-mediated Transforming Growth Factor-beta Release is Impaired in Cultured Osteoblasts from Patients with Multiple Pituitary Hormone Deficiencies
,”
J. Bone Miner. Res.
,
11
, pp.
367
376
.
59.
Turner
,
C. H.
,
1992
, “
Functional Determinants of Bone Structure: Beyond Wolff’s Law of Bone Transformation [editorial]
,”
Bone (N.Y.)
,
13
, pp.
403
409
.
60.
Dillaman
,
R. M.
,
Roer
,
R. D.
, and
Gay
,
D. M.
,
1991
, “
Fluid Movement in Bone: Theoretical and Empirical
,”
J. Biomech.
,
24
Suppl 1, pp.
163
177
.
61.
Zeng
,
Y.
,
Cowin
,
S. C.
, and
Weinbaum
,
S.
,
1994
, “
A Fiber Matrix Model for Fluid Flow and Streaming Potentials in the Canaliculi of an Osteon
,”
Ann. Biomed. Eng.
,
22
, pp.
280
292
.
62.
Turner
,
C. H.
,
Anne
,
V.
, and
Pidaparti
,
R. M.
,
1997
, “
A Uniform Strain Criterion for Trabecular Bone Adaptation: Do Continuum-Level Strain Gradients Drive Adaptation?
,”
J. Biomech.
,
30
, pp.
555
563
.
63.
Srinivasan
,
S.
, and
Gross
,
T. S.
,
2000
, “
Canalicular Fluid Flow Induced by Bending of a Long Bone
,”
Med. Eng. Phys.
,
22
, pp.
127
133
.
64.
Cowin
,
S. C.
, and
Weinbaum
,
S.
,
1998
, “
Strain Amplification in the Bone Mechanosensory System
,”
Am. J. Med. Sci.
,
316
, pp.
184
188
.
65.
Reich
,
K. M.
,
Gay
,
C. V.
, and
Frangos
,
J. A.
,
1990
, “
Fluid Shear Stress as a Mediator of Osteoblast Cyclic Adenosine Monophosphate Production
,”
J. Cell Physiol.
,
143
, pp.
100
104
.
66.
Klein-Nulend
,
J.
,
Semeins
,
C. M.
,
Ajubi
,
N. E.
,
Nijweide
,
P. J.
, and
Burger
,
E. H.
,
1995
, “
Pulsating Fluid Flow Increases Nitric Oxide (NO) Synthesis by Osteocytes but Not Periosteal Fibroblasts—Correlation with Prostaglandin Upregulation
,”
Biochem. Biophys. Res. Commun.
,
217
, pp.
640
648
.
67.
Hung
,
C. T.
,
Pollack
,
S. R.
,
Reilly
,
T. M.
, and
Brighton
,
C. T.
,
1995
, “
Real-time Calcium Response of Cultured Bone Cells to Fluid Flow
,”
Clin. Orthop.
,
313
, pp.
256
69
.
68.
Ajubi
,
N. E.
,
Klein-Nulend
,
J.
,
Nijweide
,
P. J.
,
Vrijheid-Lammers
,
T.
,
Alblas
,
M. J.
, and
Burger
,
E. H.
,
1996
, “
Pulsating Fluid Flow Increases Prostaglandin Production by Cultured Chicken Osteocytes—a Cytoskeleton-Dependent Process
,”
Biochem. Biophys. Res. Commun.
,
225
, pp.
62
68
.
69.
Hung
,
C. T.
,
Allen
,
F. D.
,
Pollack
,
S. R.
, and
Brighton
,
C. T.
,
1996
, “
Intracellular Ca2+ Stores and Extracellular Ca2+ are Required in the Real-Time Ca2+ Response of Bone Cells Experiencing Fluid Flow
,”
J. Biomech.
,
29
, pp.
1411
1417
.
70.
Klein-Nulend
,
J.
,
Burger
,
E. H.
,
Semeins
,
C. M.
,
Raisz
,
L. G.
, and
Pilbeam
,
C. C.
,
1997
, “
Pulsating Fluid Flow Stimulates Prostaglandin Release and Inducible Prostaglandin G/H Synthase mRNA Expression in Primary Mouse Bone Cells
,”
J. Bone Miner. Res.
,
12
, pp.
45
51
.
71.
Owan
,
I.
,
Burr
,
D. B.
,
Turner
,
C. H.
,
Qiu
,
J.
,
Tu
,
Y.
,
Onyia
,
J. E.
, and
Duncan
,
R. L.
,
1997
, “
Mechanotransduction in Bone: Osteoblasts are More Responsive to Fluid Forces than Mechanical Strain
,”
Am. J. Physiol.
,
273
, pp.
810
815
.
72.
Ajubi
,
N. E.
,
Klein-Nulend
,
J.
,
Alblas
,
M. J.
,
Burger
,
E. H.
, and
Nijweide
,
P. J.
,
1999
, “
Signal Transduction Pathways Involved in Fluid Flow-Induced PGE2 Production by Cultured Osteocytes
,”
Am. J. Physiol.
,
276
, pp.
171
178
.
73.
Westbroek
,
I.
,
Ajubi
,
N. E.
,
Alblas
,
M. J.
,
Semeins
,
C. M.
,
Klein-Nulend
,
J.
,
Burger
,
E. H.
, and
Nijweide
,
P. J.
,
2000
, “
Differential Stimulation of Prostaglandin G/H Synthase-2 in Osteocytes and Other Osteogenic Cells by Pulsating Fluid Flow
,”
Biochem. Biophys. Res. Commun.
,
268
, pp.
414
9
.
74.
Kurokouchi
,
K.
,
Jacobs
,
C. R.
, and
Donahue
,
H. J.
,
2001
, “
Oscillating Fluid Flow Inhibits TNF-Alpha-Induced NF-Kappa B Activation via an Ikappa B Kinase Pathway in Osteoblast-Like UMR106 Cells
,”
J. Biol. Chem.
,
276
, pp.
13499
13504
.
You do not currently have access to this content.