Detailed measurements of cell material properties are required for understanding how cells respond to their mechanical environment. Atomic force microscopy (AFM) is an increasingly popular measurement technique that uniquely combines subcellular mechanical testing with high-resolution imaging. However, the standard method of analyzing AFM indentation data is based on a simplified “Hertz” theory that requires unrealistic assumptions about cell indentation experiments. The objective of this study was to utilize an alternative “pointwise modulus” approach, that relaxes several of these assumptions, to examine subcellular mechanics of cultured human aortic endothelial cells (HAECs). Data from indentations in 2to5μm square regions of cytoplasm reveal at least two mechanically distinct populations of cellular material. Indentations colocalized with prominent linear structures in AFM images exhibited depth-dependent variation of the apparent pointwise elastic modulus that was not observed at adjacent locations devoid of such structures. The average pointwise modulus at an arbitrary indentation depth of 200nm was 5.6±3.5kPa and 1.5±0.76kPa (mean±SD, n=7) for these two material populations, respectively. The linear structures in AFM images were identified by fluorescence microscopy as bundles of f-actin, or stress fibers. After treatment with 4μM cytochalasin B, HAECs behaved like a homogeneous linear elastic material with an apparent modulus of 0.89±0.46kPa. These findings reveal complex mechanical behavior specifically associated with actin stress fibers that is not accurately described using the standard Hertz analysis, and may impact how HAECs interact with their mechanical environment.

1.
Burnham
,
N. A.
, and
Colton
,
R. J.
, 1989, “
Measuring the Nanomechanical Properties and Surface Forces of Materials Using an Atomic Force Microscope
,”
J. Vac. Sci. Technol. A
0734-2101,
7
, pp.
2906
2913
.
2.
Weisenhorn
,
A. L.
,
Khorsandi
,
M.
,
Kasas
,
S.
,
Gotzos
,
V.
, and
Butt
,
H.-J.
, 1993, “
Deformation and Height Anomaly of Soft Surfaces Studied With an AFM
,”
Nanotechnology
0957-4484,
4
, pp.
106
113
.
3.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
, 2002, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
82
, pp.
2798
2810
.
4.
Radmacher
,
M.
,
Tillamnn
,
R. W.
,
Fritz
,
M.
, and
Gaub
,
H. E.
, 1992, “
From Molecules to Cells: Imaging Soft Samples With the Atomic Force Microscope
,”
Science
0036-8075,
257
, pp.
1900
1905
.
5.
Costa
,
K. D.
, 2004, “
Single-Cell Elastography: Probing for Disease With the Atomic Force Microscope
,”
Dis. Markers
0278-0240,
19
, pp.
139
154
.
6.
Rotsch
,
C.
, and
Radmacher
,
M.
, 2000, “
Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study
,”
Biophys. J.
0006-3495,
78
, pp.
520
535
.
7.
Wu
,
H. W.
,
Kuhn
,
T.
, and
Moy
,
V. T.
, 1998, “
Mechanical Properties of L929 Cells Measured By Atomic Force Microscopy: Effects of Anticytoskeletal Drugs and Membrane Crosslinking
,”
Scanning
0161-0457,
20
, pp.
389
397
.
8.
Radmacher
,
M.
,
Fritz
,
M.
,
Kacher
,
C. M.
,
Cleveland
,
J. P.
, and
Hansma
,
P. K.
, 1996, “
Measuring the Viscoelastic Properties of Human Platelets With the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
70
, pp.
556
567
.
9.
Lekka
,
M.
,
Laidler
,
P.
,
Ignacak
,
J.
,
Labedz
,
M.
,
Lekki
,
J.
,
Struszczyk
,
H.
,
Stachura
,
Z.
, and
Hrynkiewicz
,
A. Z.
, 2001, “
The Effect of Chitosan on Stiffness and Glycolytic Activity of Human Bladder Cells
,”
Biochim. Biophys. Acta
0006-3002,
1540
, pp.
127
136
.
10.
Shroff
,
S. G.
,
Saner
,
D. R.
, and
Lal
,
R.
, 1995, “
Dynamic Micromechanical Properties of Cultured Rat Atrial Myocytes Measured by Atomic Force Microscopy
,”
Am. J. Physiol.
0002-9513,
269
, pp.
C286
C292
.
11.
Kataoka
,
N.
,
Iwaki
,
K.
,
Hashimoto
,
K.
,
Mochizuki
,
S.
,
Ogasawara
,
Y.
,
Sato
,
M.
,
Tsujioka
,
K.
, and
Fumihiko
,
K.
, 2002, “
Measurements of Endothelial Cell-to-Cell and Cell-to-Substrate Gaps and Micromechanical Properties of Endothelial Cells During Monocyte Adhesion
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
15638
15643
.
12.
Sato
,
M.
,
Nagayama
,
K.
,
Kataoka
,
N.
,
Sasaki
,
M.
, and
Hane
,
K.
, 2000, “
Local Mechanical Properties Measured by Atomic Force Microscopy for Cultured Bovine Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
0021-9290,
33
, pp.
127
135
.
13.
Hertz
,
H.
, 1881, “
Über die Berührung Fester Elastischer Körper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
14.
Costa
,
K. D.
, and
Yin
,
F. C.
, 1999, “
Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
462
471
.
15.
Rotsch
,
C.
,
Jacobson
,
K.
, and
Radmacher
,
M.
, 1999, “
Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
, pp.
921
926
.
16.
McElfresh
,
M.
,
Baesu
,
E.
,
Balhorn
,
R.
,
Belak
,
J.
,
Allen
,
M. J.
, and
Rudd
,
R. E.
, 2002, “
Combining Constitutive Materials Modeling With Atomic Force Microscopy to Understand the Mechanical Properties of Living Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, Suppl 2, pp.
6493
6497
.
17.
Mathur
,
A. B.
,
Collinsworth
,
A. M.
,
Reichert
,
W. M.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
, 2001, “
Endothelial, Cardiac Muscle, and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy
,”
J. Biomech.
0021-9290,
34
, pp.
1545
1553
.
18.
Mahaffy
,
R. E.
,
Shih
,
C. K.
,
MacKintosh
,
F. C.
, and
Kas
,
J.
, 2000, “
Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
880
883
.
19.
Pourati
,
J.
,
Maniotis
,
A.
,
Spiegel
,
D.
,
Schaffer
,
J. L.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
,
Ingber
,
D. E.
,
Stamenovic
,
D.
, and
Wang
,
N.
, 1998, “
Is Cytoskeletal Tension a Major Determinant of Cell Deformability in Adherent Endothelial Cells?
,”
Am. J. Physiol.
0002-9513,
247
, pp.
C1283
C1289
.
20.
Beatty
,
M. F.
, and
Usmani
,
S. A.
, 1975, “
On the Indentation of a Highly Elastic Half-Space
,”
Q. J. Mech. Appl. Math.
0033-5614,
28
, pp.
47
62
.
21.
Cleveland
,
J. P.
,
Manne
,
S.
,
Bocek
,
D.
, and
Hansma
,
P. K.
, 1993, “
A Nondestructive Method for Determining the Spring Constant of Cantilevers for Scanning Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
64
, pp.
403
405
.
22.
Sader
,
J. E.
,
Larson
,
I.
,
Mulvaney
,
P.
, and
White
,
L. R.
, 1995, “
Method for the Calibration of Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
66
, pp.
3789
3798
.
23.
Sader
,
J. E.
, 1995, “
Parallel Beam Approximation for V-Shaped Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
66
, pp.
4583
4587
.
24.
Briscoe
,
B. J.
,
Sebastian
,
K. S.
, and
Adams
,
M. J.
, 1994, “
The Effect of Indenter Geometry on the Elastic Response to Indentation
,”
J. Phys. D
0022-3727,
27
, pp.
1156
1162
.
25.
Langanger
,
G.
,
Moeremans
,
M.
,
Daneels
,
G.
,
Sobieszek
,
A.
,
De Brabander
,
M.
, and
De Mey
,
J.
, 1986, “
The Molecular Organization of Myosin in Stress Fibers of Cultured Cells
,”
J. Cell Biol.
0021-9525,
102
, pp.
200
209
.
26.
Katoh
,
K.
,
Kano
,
Y.
,
Masuda
,
M.
,
Onishi
,
H.
, and
Fujiwara
,
K.
, 1998, “
Isolation and Contraction of the Stress Fiber
,”
Mol. Biol. Cell
1059-1524,
9
, pp.
1919
1938
.
27.
Bader
,
D. L.
,
Ohashi
,
T.
,
Knight
,
M. M.
,
Lee
,
D. A.
, and
Sato
,
M.
, 2002, “
Deformation Properties of Articular Chondrocytes: A Critique of Three Separate Techniques
,”
Biorheology
0006-355X,
39
, pp.
69
78
.
28.
Stamenovic
,
D.
, and
Coughlin
,
M. F.
, 2000, “
A Quantitative Model of Cellular Elasticity Based on Tensegrity
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
39
43
.
29.
Petersen
,
N. O.
,
McConnaughey
,
W. B.
, and
Elson
,
E. L.
, 1982, “
Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
79
, pp.
5327
5331
.
30.
Guilak
,
F.
, 2000, “
The Deformation Behavior and Viscoelastic Properties of Chondrocytes in Articular Cartilage
,”
Biorheology
0006-355X,
37
, pp.
27
44
.
31.
A-Hassan
,
E.
,
Heinz
,
W. F.
,
Antonik
,
M. D.
,
D’Costa
,
N. P.
,
Nagaswaran
,
S.
,
Schoenenberger
,
C.-A.
, and
Hoh
,
J. H.
, 1998, “
Relative Microelastic Mapping of Living Cells by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
74
, pp.
1564
1578
.
32.
Maniotis
,
A. J.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
, 1997, “
Demonstration of Mechanical Connections Between Integrins, Cytoskeletal Filaments, and Nucleoplasm that Stabilize Nuclear Structure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
, pp.
849
854
.
33.
Heidemann
,
S. R.
,
Kaech
,
S.
,
Buxbaum
,
R. E.
, and
Matus
,
A.
, 1999, “
Direct Observations of the Mechanical Behaviors of the Cytoskeleton in Living Fibroblasts
,”
J. Cell Biol.
0021-9525,
145
, pp.
109
122
.
34.
Costa
,
K. D.
,
Hucker
,
W. J.
, and
Yin
,
F. C. P.
, 2002, “
Buckling of Actin Stress Fibers: A New Wrinkle in the Cytoskeletal Tapestry
,”
Cell Motil. Cytoskeleton
0886-1544,
52
, pp.
266
274
.
35.
Sipkema
,
P.
,
van der Linden
,
P. J. W.
,
Westerhof
,
N.
, and
Yin
,
F. C. P.
, 2003, “
Effect of Cyclic Axial Stretch of Rat Arteries on Endothelial Cytoskeletal Morphology and Vascular Reactivity
,”
J. Biomech.
0021-9290,
36
, pp.
653
659
.
36.
Charras
,
G. T.
, and
Horton
,
M. A.
, 2002, “
Determination of Cellular Strains by Combined Atomic Force Microscopy and Finite Element Modeling
,”
Biophys. J.
0006-3495,
83
, pp.
858
879
.
37.
Haga
,
H.
,
Sasaki
,
S.
,
Kawabata
,
K.
,
Ito
,
E.
,
Ushiki
,
T.
, and
Sambongi
,
T.
, 2000, “
Elasticity Mapping of Living Fibroblasts by AFM and Immunofluorescence Observation of the Cytoskeleton
,”
Ultramicroscopy
0304-3991,
82
, pp.
253
258
.
38.
Henderson
,
E.
,
Haydon
,
P. G.
, and
Sakaguchi
,
D. S.
, 1992, “
Actin Filament Dynamics in Living Glial Cells Imaged by Atomic Force Microscopy
,”
Science
0036-8075,
257
, pp.
1944
1946
.
39.
Soranno
,
T.
, and
Bell
,
E.
, 1982, “
Cytostructural Dynamics of Spreading and Translocating Cells
,”
J. Cell Biol.
0021-9525,
95
, pp.
127
136
.
40.
Wang
,
Y. L.
, 1984, “
Reorganization of Actin Filament Bundles in Living Fibroblasts
,”
J. Cell Biol.
0021-9525,
99
, pp.
1478
1485
.
41.
Heath
,
J. P.
, 1983, “
Behaviour and Structure of the Leading Lamella in Moving Fibroblasts, I. Occurrence and Centripetal Movement of Arc-Shaped Microfilament Bundles Beneath the Dorsal Cell Surface
,”
J. Cell. Sci.
0021-9533,
60
, pp.
331
354
.
42.
Small
,
J.
,
Rottner
,
K.
,
Kaverina
,
I.
, and
Anderson
,
K.
, 1998, “
Assembling an Actin Cytoskeleton for Cell Attachment and Movement
,”
Biochim. Biophys. Acta
0006-3002,
1404
, pp.
271
281
.
43.
Karduna
,
A. R.
,
Halperin
,
H. R.
, and
Yin
,
F. C. P.
, 1997, “
Experimental and Numerical Analyses of Indentation in Finite-Sized Isotropic and Anisotropic Rubber-like Materials
,”
Ann. Biomed. Eng.
0090-6964,
25
, pp.
1009
1016
.
44.
Humphrey
,
J. D.
,
Halperin
,
H. R.
, and
Yin
,
F. C. P.
, 1991, “
Small Indentation Superimposed on a Finite Equibiaxial Stretch: Implications for Cardiac Mechanics
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
1108
1111
.
45.
Sasaki
,
S.
,
Morimoto
,
M.
,
Haga
,
H.
,
Kawabata
,
K.
,
Ito
,
E.
,
Ushiki
,
T.
,
Abe
,
K.
, and
Sambongi
,
T.
, 1998, “
Elastic Properties of Living Fibroblasts as Imaged Using Force Modulation Mode in Atomic Force Microscopy
,”
Arch. Histol. Cytol.
0914-9465,
61
, pp.
57
63
.
46.
Hofmann
,
U. G.
,
Rotsch
,
C.
,
Parak
,
W. J.
, and
Radmacher
,
M.
, 1997, “
Investigating the Cytoskeleton of Chicken Cardiocytes With the Atomic Force Microscope
,”
J. Struct. Biol.
1047-8477,
119
, pp.
84
91
.
47.
Goldsmith
,
A. A.
, and
Clift
,
S. E.
, 1998, “
Investigation Into the Biphasic Properties of a Hydrogel for Use in a Cushion Form Replacement Joint
,”
J. Biomech. Eng.
0148-0731,
120
, pp.
362
369
.
48.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
J. Biomech. Eng.
0148-0731,
126
, pp.
6
16
.
49.
Pesen
,
D.
, and
Hoh
,
J. H.
, 2005, “
Micromechanical Architecture of the Endothelial Cell Cortex
,”
Biophys. J.
0006-3495,
88
, pp.
670
679
.
50.
Domke
,
J.
, and
Radmacher
,
M.
, 1998, “
Measuring the Elastic Properties of Thin Polymer Films With the Atomic Force Microscope
,”
Langmuir
0743-7463,
14
, pp.
3320
3325
.
51.
Ricci
,
D.
,
Tedesco
,
M.
, and
Grattarola
,
M.
, 1997, “
Mechanical and Morphological Properties of Living 3T6 Cells Probed via Scanning Force Microscopy
,”
Microsc. Res. Tech.
1059-910X,
36
, pp.
165
171
.
52.
Dunaway
,
D.
,
Fauver
,
M.
, and
Pollack
,
G.
, 2002, “
Direct Measurement of Single Synthetic Vertebrate Thick Filament Elasticity Using Nanofabricated Cantilevers
,”
Biophys. J.
0006-3495,
82
, pp.
3128
3133
.
53.
Liu
,
X.
, and
Pollack
,
G. H.
, 2002, “
Mechanics of F-Actin Characterized With Microfabricated Cantilevers
,”
Biophys. J.
0006-3495,
83
, pp.
2705
2715
.
54.
Janmey
,
P. A.
,
Euteneuer
,
U.
,
Traub
,
P.
, and
Schliwa
,
M.
, 1991, “
Viscoelastic Properties of Vimentin Compared With Other Filamentous Biopolymer Networks
,”
J. Cell Biol.
0021-9525,
113
, pp.
155
160
.
55.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
, pp.
1663
1673
.
56.
Butt
,
H.-J.
, and
Jaschke
,
M.
, 1995, “
Calculation of Thermal Noise in Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
6
, pp.
1
7
.
57.
Sader
,
J. E.
,
Chon
,
J. W. M.
, and
Mulvaney
,
P.
, 1999, “
Calibration of Rectangular Atomic Force Microscope Cantilevers
,”
Rev. Sci. Instrum.
0034-6748,
70
, pp.
3967
3969
.
58.
Ruan
,
J.-A.
, and
Bhushan
,
B.
, 1994, “
Atomic-Scale Friction Measurements Using Friction Force Microscopy: Part I—General Principles and New Measurement Techniques
,”
ASME J. Tribol.
0742-4787,
116
, pp.
378
388
.
You do not currently have access to this content.