Stability of a cemented implant, once the stem-cement interface has debonded, is reliant upon stem geometry and surface finish. There are relatively few studies addressing the effect of cross-sectional stem shape on cemented implant fixation. The purpose of this investigation was to compare the torsional stability of five different stem cross-sectional shapes—circular, oval, triangular, rectangular with rounded edges, and rectangular with sharp edges—under monotonically increasing and cyclic loading conditions. Seven samples of each stem geometry were tested. Stems were potted in bone cement and loaded to 5 deg of rotation. For monotonic loading, torque was applied at a constant rate of 2.5 deg/min. For cyclic loading, a sine wave torque pattern was applied, with a maximum magnitude that began at 4.5 Nm for 1500 cycles and then increased by 2.25 Nm every 1500 cycles until 5 deg of rotation. The rectangular stem with the sharp edges always provided the greatest resistance to torque, followed by the rectangular with rounded edges, triangular, oval, and circular. These results, including the effects of sharp corners, may differ for modes of loading other than torsion. These experimental results support the findings of earlier finite element models, indicating stem shape has a significant effect on resistance to torsional loading.

1.
Crowninshield
,
R. D.
,
Brand
,
R. A.
,
Johnston
,
R. C.
, and
Milroy
,
J. C.
, 1980, “
The Effect of Femoral Stem Cross-Sectional Geometry on Cement Stresses in Total Hip Reconstruction
,”
Clin. Orthop. Relat. Res.
0009-921X,
146
, pp.
71
77
.
2.
Huiskes
,
R.
, 1993, “
Failed Innovation in Total Hip Replacement. Diagnosis and Proposals for a Cure
,”
Acta Orthop. Scand.
0001-6470,
64
(
6
), pp.
699
716
.
3.
Miles
,
A. W.
, and
Dall
,
D. M.
, 1978, “
Some Design Considerations on the Stems of Total Hip Replacement Prostheses
,”
S. Afr. J. Surg.
0038-2361,
16
(
2
), pp.
157
165
.
4.
Barrack
,
R. L.
, 2000, “
Early Failure of Modern Cemented Stems
,”
J. Arthroplasty
0883-5403,
15
(
8
), pp.
1036
1050
.
5.
Charnley
,
J.
, 1960, “
Anchorage of the Femoral Head Prosthesis to the Shaft of the Femur
,”
J. Bone Joint Surg. Br.
0301-620X,
42
(
1
), pp.
28
30
.
6.
Burke
,
D. W.
,
O’Connor
,
D. O.
,
Zalenski
,
E. B.
,
Jasty
,
M.
, and
Harris
,
W. H.
, 1991, “
Micromotion of Cemented and Uncemented Femoral Components
,”
J. Bone Joint Surg. Br.
0301-620X,
73
(
1
), pp.
33
37
.
7.
Mulroy
,
W. F.
, and
Harris
,
W. H.
, 1996, “
Revision Total Hip Arthroplasty With Use of So-Called Second-Generation Cementing Techniques for Aseptic Loosening of the Femoral Component. A Fifteen-Year-Average Follow-up Study
,”
J. Bone Joint Surg. Am.
0021-9355,
78
(
3
), pp.
325
330
.
8.
Cooney
,
W. P.
, III
,
Beckenbaugh
,
R. D.
, and
Linscheid
,
R. L.
, 1984, “
Total Wrist Arthroplasty. Problems With Implant Failures
,”
Clin. Orthop. Relat. Res.
0009-921X,
187
, pp.
121
128
.
9.
Chandler
,
H. P.
,
Reineck
,
F. T.
,
Wixson
,
R. L.
, and
McCarthy
,
J. C.
, 1981, “
Total Hip Replacement in Patients Younger Than Thirty Years Old. A Five-Year Follow-up Study
,”
J. Bone Joint Surg. Am.
0021-9355,
63
(
9
), pp.
1426
1434
.
10.
Herberts
,
P.
, and
Malchau
,
H.
, 1997, “
How Outcome Studies Have Changed Total Hip Arthroplasty Practices in Sweden
,”
Clin. Orthop. Relat. Res.
0009-921X,
344
, pp.
44
60
.
11.
Stauffer
,
R. N.
, 1982, “
Ten-Year Follow-up Study of Total Hip Replacement
,”
J. Bone Joint Surg. Am.
0021-9355,
64
(
7
), pp.
983
990
.
12.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
O"Connor
,
D. O.
,
Haire
,
T.
, and
Harris
,
W. H.
, 1991, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties
,”
J. Bone Joint Surg. Br.
0301-620X,
73
(
4
), pp.
551
558
.
13.
Harrington
,
M. A.
, Jr.
,
O’Connor
,
D. O.
,
Lozynsky
,
A. J.
,
Kovach
,
I.
, and
Harris
,
W. H.
, 2002, “
Effects of Femoral Neck Length, Stem Size, and Body Weight on Strains in the Proximal Cement Mantle
,”
J. Bone Jt. Surg., Am.
0021-9355,
84
(
4
), pp.
573
579
.
14.
Crowninshield
R. D.
, and
Tolbert
,
J. R.
, 1983, “
Cement Strain Measurement Surrounding Loose and Well-Fixed Femoral Component Stems
,”
J. Biomed. Mater. Res.
0021-9304,
17
(
5
), pp.
819
828
.
15.
Shen
,
G.
, 1998, “
Femoral Stem Fixation. An Engineering Interpretation of the Long-Term Outcome of Charnley and Exeter Stems
,”
J. Bone Joint Surg. Br.
0301-620X,
80
(
5
), pp.
754
756
.
16.
Ahmed
,
A. M.
,
Raab
,
S.
, and
Miller
,
J. E.
, 1984, “
Metal/Cement Interface Strength in Cemented Stem Fixation
,”
J. Orthop. Res.
0736-0266,
2
(
2
), pp.
105
118
.
17.
Bergmann
,
G.
,
Graichen
,
F.
, and
Rohlmann
,
A.
, 1995, “
Is Staircase Walking a Risk for the Fixation of Hip Implants
?”
J. Biomech.
0021-9290,
28
(
5
), pp.
535
553
.
18.
Mohler
,
C. G.
,
Callaghan
,
J. J.
,
Collis
,
D. K.
, and
Johnston
,
R. C.
, 1995, “
Early Loosening of the Femoral Component at the Cement-Prosthesis Interface After Total Hip Replacement
,”
J. Bone Joint Surg. Am.
0021-9355,
77
(
9
), pp.
1315
1322
.
19.
Dias
,
J. J.
,
Mody
,
B. S.
,
Finlay
,
D. B.
, and
Richardson
,
R. A.
, 1993, “
Recurrent Anterior Glenohumeral Joint Dislocation and Torsion of the Humerus
,”
Injury
0020-1383,
24
(
5
), pp.
329
332
.
20.
Kendrick
,
J. B.
,
Noble
,
P. C.
, and
Tullos
,
H. S.
, 1995, “
Distal Stem Design and the Torsional Stability of Cementless Femoral Stems
,”
J. Arthroplasty
0883-5403,
10
(
4
), pp.
463
469
.
21.
Chang
,
P. B.
,
Mann
,
K. A.
, and
Bartel
,
D. L.
, 1998, “
Cemented Femoral Stem Performance. Effects of Proximal Bonding, Geometry, and Neck Length
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
, pp.
57
69
.
22.
Ebramzadeh
,
E.
,
Sarmiento
,
A.
,
Llinas
,
A.
, and
Zahiri
,
A.
, 1992, “
Effect of Stem Design and Material on the Long-Term Radiographic Behaviour of THRs
,”
Transactions 38th Orthopaedic Research Society
, Washington, DC, February 17–20, p.
300
.
23.
Huiskes
,
R.
,
Verdonschot
,
N.
, and
Nivbrant
,
B.
, 1998, “
Migration, Stem Shape, and Surface Finish in Cemented Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
, pp.
103
112
.
24.
Sangiorgio
,
S. N.
,
Ebramzadeh
,
E.
,
Longjohn
,
D. B.
, and
Dorr
,
L. D.
, 2004, “
Effects of Dorsal Flanges on Fixation of a Cemented Total Hip Replacement Femoral Stem
,”
J. Bone Joint Surg. Am.
0021-9355,
86
(
4
), pp.
813
820
.
25.
Pellicci
,
P. M.
,
Salvati
,
E. A.
, and
Robinson
,
H. J.
, 1979, “
Mechanical Failures in Total Hip Replacement Requiring Reoperation
,”
J. Bone Joint Surg. Am.
0021-9355,
61
(
1
), pp.
28
36
.
26.
Skirving
,
A. P.
, 1999, “
Total Shoulder Arthroplasty–Current Problems and Possible Solutions
,”
J. Orthop. Sci.
0949-2658,
4
(
1
), pp.
42
53
.
27.
Guerra
,
S. M.
, 2004, “
Design and Development of a Total Elbow Prosthesis to Quantify Ulnohumeral Load Transfer
,” M.E.Sc. thesis,
University of Western Ontario
, London, Ontario, Canada.
28.
Crowninshield
,
R. D.
,
Brand
,
R. A.
,
Johnston
,
R. C.
, and
Milroy
,
J. C.
, 1980, “
An Analysis of Femoral Component Stem Design in Total Hip Arthroplasty
,”
J. Bone Joint Surg. Am.
0021-9355,
62
(
1
), pp.
68
78
.
29.
Estok
,
D. M.
, and
Harris
,
W. H.
, 2000, “
A Stem Design Change to Reduce Peak Cement Strains at the Tip of Cemented Total Hip Arthroplasty
,”
J. Arthroplasty
0883-5403,
15
(
5
), pp.
584
589
.
30.
Huiskes
,
R.
, and
Boeklagen
,
R.
, 1989, “
Mathematical Shape Optimization of Hip Prosthesis Design
,”
J. Biomech.
0021-9290,
22
(
8-9
), pp.
793
804
.
31.
Mann
,
K. A.
,
Bartel
,
D. L.
, and
Ayers
,
D. C.
, 1997, “
Influence of Stem Geometry on Mechanics of Cemented Femoral Hip Components with a Proximal Bond
,”
J. Orthop. Res.
0736-0266,
15
(
5
), pp.
700
706
.
32.
Rohlmann
,
A.
,
Mossner
,
U.
,
Bergmann
,
G.
,
Hees
,
G.
, and
Kolbel
,
R.
, 1987, “
Effects of Stem Design and Material Properties on Stresses in Hip Endoprostheses
,”
J. Biomed. Eng.
0141-5425,
9
(
1
), pp.
77
83
.
33.
Stolk
,
J.
,
Verdonschot
,
N.
,
Cristofolini
,
L.
,
Toni
,
A.
, and
Huiskes
,
R.
, 2002, “
Finite Element and Experimental Models of Cemented Hip Joint Reconstructions Can Produce Similar Bone and Cement Strains in Pre-Clinical Tests
,”
J. Biomech.
0021-9290,
35
(
4
), pp.
499
510
.
34.
Viceconti
,
M.
,
Cristofolini
,
L.
, and
Toni
,
A.
, 2001, “
Design Revision of a Partially Cemented Hip Stem
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
215
(
5
), pp.
471
478
.
35.
Yoon
,
Y. S.
,
Jang
,
G. H.
, and
Kim
,
Y. Y.
, 1989, “
Shape Optimal Design of the Stem of a Cemented Hip Prosthesis to Minimize Stress Concentration in the Cement Layer
,”
J. Biomech.
0021-9290,
22
(
11-12
), pp.
1279
1284
.
36.
Rodop
,
O.
,
Kiral
,
A.
,
Arpacioglu
,
O.
,
Akmaz
,
I.
,
Solakoglu
,
C.
,
Pehlivan
,
O.
, and
Kaplan
,
H.
, 2002, “
Effects of Stem Design and Pre-Cooling Prostheses on the Heat Generated by Bone Cement in an in Vitro Model
,”
J. Int. Med. Res.
0300-0605,
30
(
3
), pp.
265
270
.
37.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1995, “
Dynamic Creep Behavior of Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
0021-9304,
29
(
5
), pp.
575
581
.
38.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1997, “
Acrylic Cement Creeps but Does Not Allow Much Subsidence of Femoral Stems
,”
J. Bone Joint Surg. Br.
0301-620X,
79
(
4
), pp.
665
669
.
39.
Kendrick
,
J. B.
II
,
Noble
,
P. C.
, and
Tullos
,
H. S.
, 1995, “
Distal Stem Design and the Torsional Stability of Cementless Femoral Stems
.”
J. Arthroplasty
0883-5403,
10
(
4
), pp.
463
469
.
40.
Hertzler
,
J.
,
Miller
,
M. A.
, and
Mann
,
K. A.
, 2002, “
Fatigue Crack Growth Rate Does Not Depend on Mantle Thickness: An Idealized Cemented Stem Construct Under Torsional Loading
,”
J. Orthop. Res.
0736-0266,
20
(
4
), pp.
676
682
.
41.
Gardiner
,
R. C.
, and
Hozack
,
W. J.
, 1994, “
Failure of the Cement-Bone Interface. A Consequence of Strengthening the Cement-Prosthesis Interface
?”
J. Bone Joint Surg. Br.
0301-620X,
76
(
1
), pp.
49
52
.
You do not currently have access to this content.