Although alterations in knee joint loading resulting from injury have been shown to influence the development of osteoarthritis, actual in vivo loading conditions of the joint remain unknown. A method for determining in vivo ligament loads by reproducing joint specific in vivo kinematics using a robotic testing apparatus is described. The in vivo kinematics of the ovine stifle joint during walking were measured with 3D optical motion analysis using markers rigidly affixed to the tibia and femur. An additional independent single degree of freedom measuring device was also used to record a measure of motion. Following sacrifice, the joint was mounted in a robotic/universal force sensor test apparatus and referenced using a coordinate measuring machine. A parallel robot configuration was chosen over the conventional serial manipulator because of its greater accuracy and stiffness. Median normal gait kinematics were applied to the joint and the resulting accuracy compared. The mean error in reproduction as determined by the motion analysis system varied between 0.06mm and 0.67mm and 0.07deg and 0.74deg for the two individual tests. The mean error measured by the independent device was found to be 0.07mm and 0.83mm for the two experiments, respectively. This study demonstrates the ability of this system to reproduce in vivo kinematics of the ovine stifle joint in vitro. The importance of system stiffness is discussed to ensure accurate reproduction of joint motion.

1.
Schwartz
,
S. T.
, and
Zimmermann
,
B.
, 1999, “
Update on Osteoarthritis
,”
Med. Health R. I
1086-5462,
82
(
9
), pp.
321
324
.
2.
Tapper
,
J. E.
,
Barnsdale
,
C.
,
Funakoshi
,
Y.
,
Hariu
,
M.
,
Sutherland
,
C.
,
Thornton
,
G. M.
,
Ronsky
,
J. L.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
, 2004, “
Evidence Supporting a New Hypothesis for the Development of Osteoarthritis
,”
Transactions of the 48th Orthopaedic Research Society Meeting
,
San Francisco
, CA, March.
3.
Lohmander
,
L. S.
, and
Roos
,
H.
, 1994, “
Knee Ligament Injury, Surgery and Osteoarthrosis. Truth Or Consequences?
,”
Acta Orthop. Scand.
0001-6470,
65
(
6
), pp.
605
609
.
4.
Gillquist
,
J.
, and
Messner
,
K.
, 1999, “
Anterior Cruciate Ligament Reconstruction and the Long-Term Incidence of Gonarthrosis
,”
Sports Med.
0112-1642,
27
(
3
), pp.
143
156
.
5.
Fink
,
C.
,
Hoser
,
C.
,
Hackl
,
W.
,
Navarro
,
R. A.
, and
Benedetto
,
K. P.
, 2001, “
Long-Term Outcome of Operative or Nonoperative Treatment of Anterior Cruciate Ligament Rupture—Is Sports Activity a Determining Variable?
,”
Int. J. Sports Med.
0172-4622,
22
(
4
), pp.
304
309
.
6.
Jomha
,
N. M.
,
Borton
,
D. C.
,
Clingeleffer
,
A. J.
, and
Pinczewski
,
L. A.
, 1999, “
Long-Term Osteoarthritic Changes in Anterior Cruciate Ligament Reconstructed Knees
,”
Clin. Orthop. Relat. Res.
0009-921X,
358
, pp.
188
193
.
7.
Beynnon
,
B.
,
Howe
,
J. G.
,
Pope
,
M. H.
,
Johnson
,
R. J.
, and
Fleming
,
B. C.
, 1992, “
The Measurement of Anterior Cruciate Ligament Strain In Vivo
,”
Int. Orthop.
0341-2695,
16
(
1
), pp.
1
12
.
8.
Henning
,
C. E.
,
Lynch
,
M. A.
, and
Glick
,
K. R.
, Jr.
, 1985, “
An In Vivo Strain Gage Study of Elongation of the Anterior Cruciate Ligament
,”
Am. J. Sports Med.
0363-5465,
13
(
1
), pp.
22
26
.
9.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
, 1982, “
A Note on the Application and Evaluation of the Buckle Transducer for the Knee Ligament Force Measurement
,”
J. Biomech. Eng.
0148-0731,
104
(
2
), pp.
125
128
.
10.
Fleming
,
B. C.
,
Peura
,
G. D.
, and
Beynnon
,
B. D.
, 2000, “
Factors Influencing the Output of an Implantable Force Transducer
,”
J. Biomech.
0021-9290,
33
(
7
), pp.
889
893
.
11.
Holden
,
J. P.
,
Grood
,
E. S.
,
Korvick
,
D. L.
,
Cummings
,
J. F.
,
Butler
,
D. L.
, and
Bylski-Austrow
,
D. I.
, 1994, “
In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped
,”
J. Biomech.
0021-9290,
27
(
5
), pp.
517
526
.
12.
Fleming
,
B. C.
, and
Beynnon
,
B. D.
, 2004, “
In Vivo Measurement of Ligament/Tendon Strains and Forces: A Review
,”
Ann. Biomed. Eng.
0090-6964,
32
(
3
), pp.
318
328
.
13.
Woo
,
S. L.
,
Debski
,
R. E.
,
Wong
,
E. K.
,
Yagi
,
M.
, and
Tarinelli
,
D.
, 1999, “
Use of Robotic Technology for Diathrodial Joint Research
,”
J. Sci. Med. Sport
1440-2440,
2
(
4
), pp.
283
297
.
14.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
, 1993, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
J. Biomech. Eng.
0148-0731,
115
(
3
), pp.
211
217
.
15.
Fujie
,
H.
,
Sekito
,
T.
, and
Orita
,
A.
, 2004, “
A Novel Robotic System for Joint Biomechanical Tests: Application to the Human Knee Joint
,”
J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
54
61
.
16.
Li
,
G.
,
Most
,
E.
,
Sultan
,
P. G.
,
Schule
,
S.
,
Zayontz
,
S.
,
Park
,
S. E.
, and
Rubash
,
H. E.
, 2004, “
Knee Kinematics With a High-Flexion Posterior Stabilized Total Knee Prosthesis: An In Vitro Robotic Experimental Investigation
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
(
8
), pp.
1721
1729
.
17.
Ma
,
C. B.
,
Janaushek
,
M. A.
,
Vogrin
,
T. M.
,
Rudy
,
T. W.
,
Harner
,
C. D.
, and
Woo
,
S. L.
, 2000, “
Significance of Changes in the Reference Position for Measurements of Tibial Translation and Diagnosis of Cruciate Ligament Deficiency
,”
J. Orthop. Res.
0736-0266,
18
(
2
), pp.
176
182
.
18.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.
, and
Fu
,
F. H.
, 1996, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
0021-9290,
29
(
10
), pp.
1357
1360
.
19.
Hurschler
,
C.
,
Wulker
,
N.
,
Windhagen
,
H.
,
Plumhoff
,
P.
, and
Hellmers
,
N.
, 2001, “
Medially Based Anterior Capsular Shift of the Glenohumeral Joint. Passive Range of Motion and Posterior Capsular Strain
,”
Am. J. Sports Med.
0363-5465,
29
(
3
), pp.
346
353
.
20.
Petersen
,
W.
,
Lenschow
,
S.
,
Weimann
,
A.
,
Strobel
,
M. J.
,
Raschke
,
M. J.
, and
Zantop
,
T.
, 2006, “
Importance of Femoral Tunnel Placement in Double-Bundle Posterior Cruciate Ligament Reconstruction: Biomechanical Analysis Using a Robotic/Universal Force-Moment Sensor Testing System
,”
Am. J. Sports Med.
0363-5465,
34
(
3
), pp.
456
463
.
21.
Tashman
,
S.
, and
Anderst
,
W.
, 2003, “
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
238
245
.
22.
Li
,
G.
,
Wuerz
,
T. H.
, and
DeFrate
,
L. E.
, 2004, “
Feasibility of Using Orthogonal Fluoroscopic Images to Measure In Vivo Joint Kinematics
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
314
318
.
23.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C.
, and
Sum
,
J.
, 1998, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
J. Biomech. Eng.
0148-0731,
120
(
6
), pp.
743
749
.
24.
Tapper
,
J. E.
,
Ronsky
,
J. L.
,
Powers
,
M. J.
,
Sutherland
,
C.
,
Majima
,
T.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
, 2004, “
In Vivo Measurement of the Dynamic 3-D Kinematics of the Ovine Stifle Joint
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
301
305
.
25.
Soderkvist
,
I.
, and
Wedin
,
P. A.
, 1993, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1473
1477
.
26.
Vischer
,
P.
, and
Clavel
,
R.
, 2000, “
Argos: A Novel 3-Dof Parallel Wrist Mechanism
,”
Int. J. Robot. Res.
0278-3649,
19
(
1
), pp.
5
8
.
27.
Slabaugh
,
G.
, 1999, “
Computing Euler Angles From a Rotation Matrix
,” available from http://home.comcast.net/~greg_slabaugh/publications/euler.pdfhttp://home.comcast.net/~greg_slabaugh/publications/euler.pdf
You do not currently have access to this content.