Deep tissue injury (DTI) is a potentially life-threatening form of pressure ulcer that onsets in muscle tissue overlying bony prominences and progresses unnoticeably to more superficial tissues. To minimize DTI, the efficacy of wheelchair cushions should be evaluated not only based on their performance in redistributing interface pressures but also according to their effects on stress concentrations in deep tissues, particularly muscles. However, a standard bioengineering approach for such analyses is missing in literature. The goals of this study were to develop an algorithm to couple finite element (FE) modeling of the buttocks with an injury threshold for skeletal muscle and with a damage-stiffening law for injured muscle tissue, from previous animal experiments, to predict DTI onset and progression for different patient anatomies and wheelchair cushions. The algorithm was also employed for identifying intrinsic (anatomical) biomechanical risk factors for DTI onset. A set of three-dimensional FE models of seated human buttocks was developed, representing different severities of pathoanatomical changes observed in chronically sitting patients: muscle atrophy and “flattening” of the ischial tuberosity (IT). These models were then tested with cushions of different stiffnesses representing products available on the market and semirigid supports. Outcome measures were the percentage of damaged muscle tissue volumes after 90min and 110min of simulated continuous immobilized sitting as well as muscle injury rates post-60min, -90min, and -110min of continuous sitting. Damaged muscle volumes grew exponentially with the level of muscle atrophy. For example, simulation of a subject with 70% muscle atrophy sitting on a soft cushion showed damage to 33% of the muscle volume after 90min of immobilized sitting, whereas a comparable simulation with a nonatrophied muscle yielded only 0.4% damaged tissue volume. The rates of DTI progression also increased substantially with increasing severities of muscle atrophy, e.g., 70% atrophy resulted in 8.9, 2.7, and 1.6 times greater injury rates compared with the “reference” muscle thickness cases, after 60min, 90min, and 110min of sitting, respectively. Across all simulation cases, muscle injury rate was higher when a “flatter” IT was simulated. Stiffer cushions increased both the extent and rate of DTI at times shorter than 90min of continuous sitting, but after 110min, volumes and rates of tissue damage converged to approximately similar values across the different cushion materials. The present methodology is a practical tool for evaluating the performances of cushions in reducing the risk for DTI in a manner that goes far beyond the commonly accepted measurements of sitting pressures.

1.
Gefen
,
A.
, 2007, “
The Biomechanics of Sitting-Acquired Pressure Ulcers in Patients With Spinal Cord Injury or Lesions
,”
Int. Wound. J.
,
4
, pp.
222
231
.
2.
Stekelenburg
,
A.
,
Strijkers
,
G. J.
,
Parusel
,
H.
,
Bader
,
D. L.
,
Nicolay
,
K.
, and
Oomens
,
C. W.
, 2007, “
Role of Ischemia and Deformation in the Onset of Compression-Induced Deep Tissue Injury: MRI-Based Studies in a Rat Model
,”
J. Appl. Physiol.
8750-7587,
102
, pp.
2002
2011
.
3.
Gefen
,
A.
,
Cornelissen
,
L. H.
,
Gawlitta
,
D.
,
Bader
,
D. L.
, and
Oomens
,
C. W. J.
, 2008, “
The Free Diffusion of Macromolecules in Tissue-Engineered Skeletal Muscle Subjected to Large Compression Strains
,”
J. Biomech.
0021-9290,
41
, pp.
845
853
.
4.
Peeters
,
E. A.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
,
Bader
,
D. L.
, and
Baaijens
,
F. P.
, 2005, “
Mechanical and Failure Properties of Single Attached Cells Under Compression
,”
J. Biomech.
0021-9290,
38
, pp.
1685
1693
.
5.
Gawlitta
,
D.
,
Li
,
W.
,
Oomens
,
C. W.
,
Baaijens
,
F. P.
,
Bader
,
D. L.
, and
Bouten
,
C. V.
, 2007, “
The Relative Contributions of Compression and Hypoxia to Development of Muscle Tissue Damage: An In Vitro Study
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
273
284
.
6.
Agam
,
L.
, and
Gefen
,
A.
, 2007, “
Pressure Ulcers and Deep Tissue Injury: A Bioengineering Perspective
,”
J. Wound Care
0969-0700,
16
, pp.
336
343
.
7.
Bar
,
C. A.
, 1991, “
Evaluation of Cushions Using Dynamic Pressure Measurement
,”
Prosthet. Orthot Int.
0309-3646,
15
, pp.
232
240
.
8.
Ferrarin
,
M.
,
Andreoni
,
G.
, and
Pedotti
,
A.
, 2000, “
Comparative Biomechanical Evaluation of Different Wheelchair Seat Cushions
,”
J. Rehabil. Res. Dev.
0748-7711,
37
, pp.
315
324
.
9.
Eitzen
,
I.
, 2004, “
Pressure Mapping in Seating: A Frequency Analysis Approach
,”
Arch. Phys. Med. Rehabil.
0003-9993,
85
, pp.
1136
1140
.
10.
Gefen
,
A.
, 2007, “
Pressure-Sensing Devices for Assessment of Soft Tissue Loading Under Bony Prominences: Technological Concepts and Clinical Utilization
,”
Wounds–Compend. Clin. Res. Prac.
,
19
, pp.
350
362
.
11.
Levine
,
S. P.
,
Kett
,
R. L.
, and
Ferguson-Pell
,
M. W.
, 1990, “
Tissue Shape and Deformation Versus Pressure as a Characterization of the Seating Interface
,”
Assist. Technol.
,
2
, pp.
93
99
.
12.
Brienza
,
D. M.
,
Karg
,
P. E.
, and
Brubaker
,
C. E.
, 1996, “
Seat Cushion Design for Elderly Wheelchair Users Based on Minimization of Soft Tissue Deformation Using Stiffness and Pressure Measurements
,”
IEEE Trans. Rehabil. Eng.
1063-6528,
4
, pp.
320
327
.
13.
Kadaba
,
M. P.
,
Ferguson-Pell
,
M. W.
,
Palmieri
,
V. R.
, and
Cochran
,
G. V. B.
, 1984, “
Ultrasound Mapping of the Buttock-Cushion Interface Contour
,”
Arch. Phys. Med. Rehabil.
0003-9993,
65
, pp.
467
469
.
14.
Sprigle
,
S.
, and
Schuch
,
J. Z.
, 1993, “
Using Seat Contour Measurement During Seating Evaluations of Individuals With SCI
,”
Assist. Technol.
,
5
, pp.
24
35
.
15.
Li
,
Y.
,
Aissaoui
,
R.
,
Lacoste
,
M.
, and
Dansereau
,
J.
, 2004, “
Development and Evaluation of a New Body-Seat Interface Shape Measurement System
,”
IEEE Trans. Biomed. Eng.
0018-9294,
51
, pp.
2040
2050
.
16.
Stewart
,
S. F. C.
,
Palmieri
,
V.
, and
Cochran
,
G. V. B.
, 1980, “
Wheelchair Cushion Effect on Skin Temperature, Heat Flux, and Relative Humidity
,”
Arch. Phys. Med. Rehabil.
0003-9993,
61
, pp.
229
233
.
17.
Ferrarin
,
M.
, and
Ludwig
,
N.
, 2000, “
Analysis of Thermal Properties of Wheelchair Cushions With Thermography
,”
Med. Biol. Eng. Comput.
0140-0118,
38
, pp.
31
34
.
18.
Tam
,
E. W.
,
Mak
,
A. F.
,
Lam
,
W. N.
,
Evans
,
J. H.
, and
Chow
,
Y. Y.
, 2003, “
Pelvic Movement and Interface Pressure Distribution During Manual Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
0003-9993,
84
, pp.
1466
1472
.
19.
Oomens
,
C. W.
,
Bressers
,
O. F.
,
Bosboom
,
E. M.
,
Bouten
,
C. V.
, and
Bader
,
D. L.
, 2003, “
Can Loaded Interface Characteristics Influence Strain Distributions in Muscle Adjacent to Bony Prominences?
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
, pp.
171
180
.
20.
Linder-Ganz
,
E.
,
Shabshin
,
N.
,
Itzchak
,
Y.
, and
Gefen
,
A.
, 2007, “
Assessment of Mechanical Conditions in Sub-Dermal Tissues During Sitting: A Combined Experimental-MRI and Finite Element Approach
,”
J. Biomech.
0021-9290,
40
, pp.
1443
1454
.
21.
Linder-Ganz
,
E.
,
Shabshin
,
N.
,
Itzchak
,
Y.
,
Yizhar
,
Z.
,
Siev-Ner
,
I.
, and
Gefen
,
A.
, 2008, “
Strains and Stresses in Sub-Dermal Tissues of the Buttocks are Greater in Paraplegics Than in Healthy During Sitting
,”
J. Biomech.
0021-9290,
41
, pp.
567
580
.
22.
Gefen
,
A.
, and
Levine
,
J.
, 2007, “
The False Premise in Measuring Body-Support Interface Pressures for Preventing Serious Pressure Ulcers
,”
J. Med. Eng. Technol.
0309-1902,
31
, pp.
375
380
.
23.
Black
,
J. M.
, 2005, “
Moving Towards Consensus on Deep Tissue Injury and Pressure Ulcer Staging
,”
Adv. Skin Wound Care
,
18
, pp.
415
421
.
24.
Stekelenburg
,
A.
,
Oomens
,
C. W.
,
Strijkers
,
G. J.
,
Nicolay
,
K.
, and
Bader
,
D. L.
, 2006, “
Compression-Induced Deep Tissue Injury Examined With Magnetic Resonance Imaging and Histology
,”
J. Appl. Physiol.
8750-7587,
100
, pp.
1946
1954
.
25.
Black
,
J.
,
Baharestani
,
M.
,
Cuddigan
,
J.
,
Dorner
,
B.
,
Edsberg
,
L.
,
Langemo
,
D.
,
Posthauer
,
M. E.
,
Ratliff
,
C.
, and
Taler
,
G.
, 2007, “
National Pressure Ulcer Advisory Panel’S Updated Pressure Ulcer Staging System
,”
Dermatol. Nurs.
1060-3441,
19
, pp.
343
349
.
26.
Bliss
,
M. R.
, 1992, “
Acute Pressure Area Care: Sir James Paget’s Legacy
,”
Lancet
0140-6736,
339
, pp.
221
223
.
27.
Tsokos
,
M.
,
Heinemann
,
A.
, and
Puschel
,
K.
, 2000, “
Pressure Sores: Epidemiology, Medico-Legal Implications and Forensic Argumentation Concerning Causality
,”
Int. J. Legal Med.
0937-9827,
113
, pp.
283
287
.
28.
Margolis
,
D. J.
,
Knauss
,
J.
,
Bilker
,
W.
, and
Baumgarten
,
M.
, 2003, “
Medical Conditions as Risk Factors for Pressure Ulcers in an Outpatient Setting
,”
Age Ageing
0002-0729,
32
, pp.
259
264
.
29.
Daniel
,
R. K.
,
Priest
,
D. L.
, and
Wheatley
,
D. C.
, 1981, “
Etiologic Factors in Pressure Sores: An Experimental Model
,”
Arch. Phys. Med. Rehabil.
0003-9993,
62
, pp.
492
498
.
30.
Salcido
,
R.
,
Donofrio
,
J. C.
,
Fisher
,
S. B.
,
LeGrand
,
E. K.
,
Dickey
,
K.
,
Carney
,
J. M.
,
Schosser
,
R.
, and
Liang
,
R.
, 1994, “
Histopathology of Pressure Ulcers as a Result of Sequential Computer-Controlled Pressure Sessions in a Fuzzy Rat Model
,”
Adv. Wound Care
1076-2191,
7
, pp.
23
28
.
31.
Castro
,
M. J.
,
Apple
,
D. F.
,
Staron
,
R. S.
,
Campos
,
G. E.
, and
Dudley
,
G. A.
, 1999, “
Influence of Complete Spinal Cord Injury on Skeletal Muscle Within 6Month of Injury
,”
J. Appl. Physiol.
8750-7587,
86
, pp.
350
358
.
32.
Castro
,
M. J.
,
Apple
,
D. F.
,
Hillegass
,
E. A.
, and
Dudley
,
G. A.
, 1999, “
Influence of Complete Spinal Cord Injury on Skeletal Muscle Cross-Sectional Area Within the First 6Months of Injury
,”
Eur. J. Appl. Physiol.
0301-5548,
80
, pp.
373
378
.
33.
Talmadge
,
R. J.
,
Roy
,
R. R.
,
Caiozzo
,
V. J.
, and
Edgerton
,
V. R.
, 2002, “
Mechanical Properties of Rat Soleus After Long-Term Spinal Cord Transaction
,”
J. Appl. Physiol.
8750-7587,
93
, pp.
1487
1497
.
34.
Buchholz
,
A. C.
, and
Bugaresti
,
J. M.
, 2005, “
A Review of Body Mass Index and Waist Circumference as Markers of Obesity and Coronary Heart Disease Risk in Persons With Chronic Spinal Cord Injury
,”
Spinal Cord
1362-4393,
43
, pp.
513
518
.
35.
Diffee
,
G. M.
,
Caiozzo
,
V. J.
,
Herrick
,
R. E.
, and
Baldwin
,
K. M.
, 1991, “
Contractile and Biochemical Properties of Rat Soleus and Plantaris After Hindlimb Suspension
,”
Am. J. Physiol.
0002-9513,
260
, pp.
C528
534
.
36.
Landry
,
E.
,
Frenette
,
J.
, and
Guertin
,
P. A.
, 2004, “
Body Weight, Limb Size, and Muscular Properties of Early Paraplegic Mice
,”
J. Neurotrauma
0897-7151,
21
, pp.
1008
1016
.
37.
Giangregorio
,
L. M.
,
Craven
,
B. C.
, and
Webber
,
C. E.
, 2005, “
Musculoskeletal Changes in Women With Spinal Cord Injury: A Twin Study
,”
J. Clin. Densitom.
,
8
, pp.
347
351
.
38.
Buchholz
,
A. C.
,
McGillivray
,
C. F.
, and
Pencharz
,
P. B.
, 2003, “
Differences in Resting Metabolic Rate Between Paraplegic and Able-Bodied Subjects are Explained by Differences in Body Composition
,”
Am. J. Clin. Nutr.
0002-9165,
77
, pp.
371
378
.
39.
Jeon
,
J. Y.
,
Steadward
,
R. D.
,
Wheeler
,
G. D.
,
Bell
,
G.
,
McCargar
,
L.
, and
Harber
,
V.
, 2003, “
Intact Sympathetic Nervous System is Required for Leptin Effects on Resting Metabolic Rate in People With Spinal Cord Injury
,”
J. Clin. Endocrinol. Metab.
0021-972X,
88
, pp.
402
407
.
40.
Maggioni
,
M.
,
Bertoli
,
S.
,
Margonato
,
V.
,
Merati
,
G.
,
Veicsteinas
,
A.
, and
Testolin
,
G.
, 2003, “
Body Composition Assessment in Spinal Cord Injury Subjects
,”
Acta Diabetol
0940-5429,
40
, pp.
S183
186
.
41.
Modlesky
,
C. M.
,
Bickel
,
C. S.
,
Slade
,
J. M.
,
Meyer
,
R. A.
,
Cureton
,
K. J.
, and
Dudley
,
G. A.
, 2004, “
Assessment of Skeletal Muscle Mass in Men With Spinal Cord Injury Using Dual-Energy X-Ray Absorptiometry and Magnetic Resonance Imaging
,”
J. Appl. Physiol.
8750-7587,
96
, pp.
561
565
.
42.
de Bruin
,
E. D.
,
Dietz
,
V.
,
Dambacher
,
M. A.
, and
Stüssi
,
E.
, 2000, “
Longitudinal Changes in Bone in Men With Spinal Cord Injury
,”
Clin. Rehabil.
0269-2155,
14
, pp.
145
152
.
43.
Rittweger
,
J.
,
Gerrits
,
K.
,
Altenburg
,
T.
,
Reeves
,
N.
,
Maganaris
,
C. N.
, and
de Haan
,
A.
, 2006, “
Bone Adaptation to Altered Loading After Spinal Cord Injury: A Study of Bone and Muscle Strength
,”
J. Musculoskelet. Neuronal. Interact.
,
6
, pp.
269
276
.
44.
Ragan
,
R.
,
Kernozek
,
T. W.
,
Bidar
,
M.
, and
Matheson
,
J. W.
, 2002, “
Seat-Interface Pressures on Various Thicknesses of Foam Wheelchair Cushions: A Finite Modeling Approach
,”
Arch. Phys. Med. Rehabil.
0003-9993,
83
, pp.
872
875
.
45.
Verver
,
M. M.
,
van Hoof
,
J.
,
Oomens
,
C. W.
,
Wismans
,
J. S.
, and
Baaijens
,
F. P.
, 2004, “
A Finite Element Model of the Human Buttocks for Prediction of Seat Pressure Distributions
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
, pp.
193
203
.
46.
Linder-Ganz
,
E.
, and
Gefen
,
A.
, 2004, “
Mechanical Compression-Induced Pressure Sores in Rat Hind-Limb: Muscle Stiffness, Histology and Computational Models
,”
J. Appl. Physiol.
8750-7587,
96
, pp.
2034
2049
.
47.
Gefen
,
A.
,
Gefen
,
N.
,
Linder-Ganz
,
E.
, and
Margulies
,
S. S.
, 2005, “
In Vivo Muscle Stiffening Under Bone Compression Promotes Deep Pressure Sores
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
512
524
.
48.
Breuls
,
R. G.
,
Bouten
,
C. V.
,
Oomens
,
C. W.
,
Bader
,
D. L.
, and
Baaijens
,
F. P.
, 2003, “
Compression Induced Cell Damage in Engineered Muscle Tissue: An In Vitro Model to Study Pressure Ulcer Aetiology
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1357
1364
.
49.
Linder-Ganz
,
E.
,
Engelberg
,
S.
,
Scheinowitz
,
M.
, and
Gefen
,
A.
, 2006, “
Pressure-Time Cell Death Threshold for Albino Rat Skeletal Muscles as Related to Pressure Sore Biomechanics
,”
J. Biomech.
0021-9290,
39
, pp.
2725
2732
.
50.
Husain
,
T.
, 1953, “
An Experimental Study of Some Pressure Effects on Tissues, With Reference to the Bed-Sore Problem
,”
J. Pathol. Bacteriol.
0368-3494,
66
, pp.
347
358
.
51.
Nola
,
G. T.
, and
Vistnes
,
L. M.
, 1980, “
Differential Response of Skin and Muscle in the Experimental Production of Pressure Sores
,”
Plast. Reconstr. Surg.
0032-1052,
66
, pp.
728
733
.
52.
Kosiak
,
M.
, 1961, “
Etiology of Decubitus Ulcers
,”
Arch. Phys. Med. Rehabil.
0003-9993,
42
, pp.
19
29
.
53.
Salcido
,
R.
,
Fisher
,
S. B.
,
Donofrio
,
J. C.
,
Bieschke
,
M.
,
Knapp
,
C.
,
Liang
,
R.
,
LeGrand
,
E. K.
, and
Carney
,
J. M.
, 1995, “
An Animal Model and Computer-Controlled Surface Pressure Delivery System for the Production of Pressure Ulcers
,”
J. Rehabil. Res. Dev.
0748-7711,
32
, pp.
149
161
.
54.
Gefen
,
A.
,
van Nierop
,
B.
,
Bader
,
D. L.
,
Oomens
,
C. W.
, 2008, “
Strain-Time Cell-Death Threshold for Skeletal Muscle in a Tissue-Engineered Model System for Deep Tissue Injury
,”
J. Biomech.
0021-9290,
41
, pp.
2003
2012
.
55.
Gefen
,
A.
, 2007, “
Risk Factors for a Pressure-Related Deep Tissue Injury: A Theoretical Model
,”
Med. Biol. Eng. Comput.
0140-0118,
45
, pp.
563
573
.
56.
Makhsous
,
M.
,
Lim
,
D.
,
Hendrix
,
R.
,
Bankard
,
J.
,
Rymer
,
W. Z.
, and
Lin
,
F.
, 2007, “
Finite Element Analysis for Evaluation of Pressure Ulcer on the Buttock: Development and Validation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
1534-4320,
15
, pp.
517
525
.
57.
Wagnac
,
E. L.
,
Aubin
,
C. E.
, and
Dansereau
,
J.
, 2008, “
A New Method to Generate a Patient-Specific Finite Element Model of the Human Buttocks
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
, pp.
774
783
.
58.
Ogden
,
R. W.
, 2001, “
Elements of the Theory of Finite Elasticity
,”
Nonlinear Elasticity: Theory and Applications
(
London Mathematical Society Lecture Note Series M. 283
),
Y. B.
Fu
and
R. W.
Ogden
, eds.,
Cambridge University Press
,
Cambridge, U.K.
, p.
20
.
59.
Palevski
,
A.
,
Glaich
,
I.
,
Portnoy
,
S.
,
Linder-Ganz
,
E.
, and
Gefen
,
A.
, 2006, “
Stress Relaxation of Porcine Gluteus Muscle Subjected to Sudden Transverse Deformation as Related to Pressure Sore Modeling
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
782
787
.
60.
Brosh
,
T.
, and
Arcan
,
M.
, 2000, “
Modeling the Body/Chair Interaction-An Integrative Experimental-Numerical Approach
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
15
, pp.
217
219
.
61.
Bosboom
,
E. M. H.
,
Hesselink
,
M. K. C.
,
Oomens
,
C. W. J.
,
Bouten
,
C. V. C.
,
Drost
,
M. R.
, and
Baaijens
,
F. P. T.
, 2001, “
Passive Transverse Mechanical Properties of Skeletal Muscle Under In Vivo Compression
,”
J. Biomech.
0021-9290,
34
, pp.
1365
1368
.
62.
Gefen
,
A.
, and
Haberman
,
E.
, 2007, “
Viscoelastic Properties of Ovine Adipose Tissue Covering the Gluteus Muscles
,”
ASME J. Biomech. Eng.
0148-0731,
129
,
924
930
.
63.
Ohura
,
T.
,
Ohura
,
N.
, and
Oka
,
H.
, 2007, “
Outcomes Research—Incidence and Clinical Symptoms of Hourglass and Sandwich-Shaped Tissue Necrosis in Stage IV Pressure Ulcers
,”
Wounds–Compend. Clin. Res. Prac.
,
19
, pp.
310
319
.
64.
Aronovitch
,
S. A.
, 2007, “
Intraoperatively Acquired Pressure Ulcers: Are There Common Risk Factors?
,”
Ostomy Wound Manage
0889-5899,
53
, pp.
57
69
.
65.
Farid
,
K. J.
, 2007, “
Applying Observations From Forensic Science to Understanding the Development of Pressure Ulcers
,”
Ostomy Wound Manage
0889-5899,
53
, pp.
26
32
.
66.
National Guideline Clearinghouse (NGC) of the Agency for Healthcare Research and Quality (AHRQ), “
Description of Intervention
,” 2004.
You do not currently have access to this content.