The increased utilization of total elbow replacements has resulted in a correspondingly increased number of failed implants requiring revision. The most common reason for revision is aseptic loosening of the ulnar component due to polyethylene induced osteolysis. Implant malalignment is thought to be an important cause of bearing wear and implant failure. The ulnar flexion axis can be used to accurately align the ulnar component of the elbow implant; however, the optimal method of determining this axis intra-operatively is unknown. This in vitro study determined the relationship amongst kinematically and anatomically defined ulnar flexion axes in an effort to improve the accuracy of ulnar component positioning. Five different techniques were used to determine the ulnar flexion axis in 12 cadaveric specimens, 3 kinematic and 2 anatomic. The techniques were compared with the screw displacement axis from simulated elbow flexion. An anatomic measurement technique using the guiding ridge of the greater sigmoid notch of the ulna and the radial head was found to most accurately replicate the position and orientation of the screw displacement axis of the elbow (p<0.05). Because an anatomically derived flexion axis can be determined using both pre-operative imaging techniques, as well as with intra-operative guides, it is more practical than kinematically derived techniques requiring tracking systems for clinical application and should provide reliable and consistent results.

1.
Hildebrand
,
K. A.
,
Patterson
,
S. D.
,
Regan
,
W. D.
,
MacDermid
,
J. C.
, and
King
,
G. J.
, 2000, “
Functional Outcome of Semiconstrained Total Elbow Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
82-A
, pp.
1379
1386
.
2.
Müller
,
L. P.
,
Kamineni
,
S.
,
Rommens
,
P. M.
, and
Morrey
,
B. F.
, 2005, “
Primary Total Elbow Replacement for Fractures of the Distal Humerus
,”
Oper. Orthop. Traumatol.
,
17
, pp.
119
142
.
3.
Kamineni
,
S.
, and
Morrey
,
B. F.
, 2004, “
Proximal Ulnar Reconstruction With Strut Allograft in Revision Total Elbow Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355, Vol.
86-A
, pp.
1223
1229
.
4.
Ring
,
D.
,
Kocher
,
M.
,
Koris
,
M.
, and
Thornhill
,
T. S.
, 2005, “
Revision of Unstable Capitellocondylar (Unlinked) Total Elbow Replacement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
, pp.
1075
1079
.
5.
Loebenberg
,
M. I.
,
Adams
,
R.
,
O’Driscoll
,
S. W.
, and
Morrey
,
B. F.
, 2005, “
Impaction Grafting in Revision Total Elbow Arthroplasty
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
87
, pp.
99
106
.
6.
Schuind
,
F.
,
O’Driscoll
,
S.
,
Korinek
,
S.
,
An
,
K. N.
, and
Morrey
,
B. F.
, 1995, “
Loose-Hinge Total Elbow Arthroplasty. An Experimental Study of the Effects of Implant Alignment on Three-Dimensional Elbow Kinematics
,”
J. Arthroplasty
0883-5403,
10
, pp.
670
678
.
7.
Shiba
,
R.
,
Sorbie
,
C.
,
Siu
,
D. W.
,
Bryant
,
J. T.
,
Cooke
,
T. D.
, and
Wevers
,
H. W.
, 1988, “
Geometry of the Humeroulnar Joint
,”
J. Orthop. Res.
0736-0266,
6
, pp.
897
906
.
8.
Stokdijk
,
M.
,
Meskers
,
C. G.
,
Veeger
,
H. E.
,
de Boer
,
Y. A.
, and
Rozing
,
P. M.
, 1999, “
Determination of the Optimal Elbow Axis for Evaluation of Placement of Prostheses
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
, pp.
177
184
.
9.
Brownhill
,
J. R.
,
Furukawa
,
K.
,
Faber
,
K. J.
,
Johnson
,
J. A.
, and
King
,
G. J.
, 2005, “
Surgeon Accuracy in the Selection of the Flexion-Extension Axis of the Elbow: An In Vitro Study
,”
J. Shoulder Elbow Surg.
1058-2746,
15
(
4
), pp.
451
456
.
10.
London
,
J. T.
, 1981, “
Kinematics of the Elbow
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
63
, pp.
529
535
.
11.
Morrey
,
B. F.
, and
Chao
,
E. Y.
, 1998, “
Effects of Acetabular Abduction on Cup Wear Rates in Total Hip Arthroplasty
,”
J. Arthroplasty
0883-5403,
13
, pp.
621
626
.
12.
O’Driscoll
,
S. W.
,
An
,
K. N.
,
Korinek
,
S.
, and
Morrey
,
B. F.
, 1992, “
Kinematics of Semi-Constrained Total Elbow Arthroplasty
,”
J. Bone Joint Surg. Br.
0301-620X,
74
, pp.
297
299
.
13.
Bottlang
,
M.
,
Madey
,
S. M.
,
Steyers
,
C. M.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
, 2000, “
Assessment of Elbow Joint Kinematics in Passive Motion by Electromagnetic Motion Tracking
,”
J. Orthop. Res.
0736-0266,
18
, pp.
195
202
.
14.
Duck
,
T. R.
,
Dunning
,
C. E.
,
Armstrong
,
A. D.
,
Johnson
,
J. A.
, and
King
,
G. J.
, 2003, “
Application of Screw Displacement Axes to Quantify Elbow Instability
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
, pp.
303
310
.
15.
Duck
,
T. R.
,
Dunning
,
C. E.
,
King
,
G. J.
, and
Johnson
,
J. A.
, 2003, “
Variability and Repeatability of the Flexion Axis at the Ulnohumeral Joint
,”
J. Orthop. Res.
0736-0266,
21
, pp.
399
404
.
16.
Dunning
,
C. E.
,
Duck
,
T. R.
,
King
,
G. J.
, and
Johnson
,
J. A.
, 2001, “
Simulated Active Control Produces Repeatable Motion Pathways of the Elbow in an In Vitro Testing System
,”
J. Biomech.
0021-9290,
34
, pp.
1039
1048
.
17.
Dunning
,
C. E.
,
Gordon
,
K. D.
,
King
,
G. J.
, and
Johnson
,
J. A.
, 2003, “
Development of a Motion-Controlled In Vitro Elbow Testing System
,”
J. Orthop. Res.
0736-0266,
21
, pp.
405
411
.
18.
Deland
,
J. T.
,
Garg
,
A.
, and
Walker
,
P. S.
, 1987, “
Biomechanical Basis for Elbow Hinge-Distractor Design
,”
Clin. Orthop. Relat. Res.
0009-921X, Feb.
215
, pp.
303
312
.
19.
Tanaka
,
S.
,
An
,
K. N.
, and
Morrey
,
B. F.
, 1998, “
Kinematics and Laxity of Ulnohumeral Joint Under Valgus-Varus Stress
,”
Journal of Musculoskeletal Research
,
2
, pp.
45
54
.
You do not currently have access to this content.