This study aims at investigating three-dimensional subject-specific cerebrospinal fluid (CSF) dynamics in the inferior cranial space, the superior spinal subarachnoid space (SAS), and the fourth cerebral ventricle using a combination of a finite-volume computational fluid dynamics (CFD) approach and magnetic resonance imaging (MRI) experiments. An anatomically accurate 3D model of the entire SAS of a healthy volunteer was reconstructed from high resolution T2 weighted MRI data. Subject-specific pulsatile velocity boundary conditions were imposed at planes in the pontine cistern, cerebellomedullary cistern, and in the spinal subarachnoid space. Velocimetric MRI was used to measure the velocity field at these boundaries. A constant pressure boundary condition was imposed at the interface between the aqueduct of Sylvius and the fourth ventricle. The morphology of the SAS with its complex trabecula structures was taken into account through a novel porous media model with anisotropic permeability. The governing equations were solved using finite-volume CFD. We observed a total pressure variation from 42Pato40Pa within one cardiac cycle in the investigated domain. Maximum CSF velocities of about 15cms occurred in the inferior section of the aqueduct, 14cms in the left foramen of Luschka, and 9cms in the foramen of Magendie. Flow velocities in the right foramen of Luschka were found to be significantly lower than in the left, indicating three-dimensional brain asymmetries. The flow in the cerebellomedullary cistern was found to be relatively diffusive with a peak Reynolds number (Re)=72, while the flow in the pontine cistern was primarily convective with a peak Re=386. The net volumetric flow rate in the spinal canal was found to be negligible despite CSF oscillation with substantial amplitude with a maximum volumetric flow rate of 109mlmin. The observed transient flow patterns indicate a compliant behavior of the cranial subarachnoid space. Still, the estimated deformations were small owing to the large parenchymal surface. We have integrated anatomic and velocimetric MRI data with computational fluid dynamics incorporating the porous SAS morphology for the subject-specific reconstruction of cerebrospinal fluid flow in the subarachnoid space. This model can be used as a basis for the development of computational tools, e.g., for the optimization of intrathecal drug delivery and computer-aided evaluation of cerebral pathologies such as syrinx development in syringomelia.

1.
Davson
,
H.
,
Welch
,
K.
,
Segal
,
M. B.
, and
Davson
,
H.
, 1987,
Physiology and pathophysiology of the Cerebrospinal Fluid
,
Churchill Livingstone
,
Edinburgh
.
2.
Silverberg
,
G.
,
Mayo
,
M.
,
Saul
,
T.
,
Fellmann
,
J.
, and
McGuire
,
D.
, 2006, “
Elevated Cerebrospinal Fluid Pressure in Patients With Alzheimer’s Disease
,”
Cerebrospinal Fluid Research
,
3
(
1
), p.
7
.
3.
Fishman
,
R. A.
, 1992,
Cerebrospinal Fluid in Diseases of the Nervous System
,
Saunders
,
Philadelphia
.
4.
Nicholson
,
C.
, 1999, “
Signals That go With the Flow
,”
Trends Neurosci.
0166-2236,
22
(
4
), pp.
143
145
.
5.
Kurtcuoglu
,
V.
,
Soellinger
,
M.
,
Summers
,
P.
,
Poulikakos
,
D.
, and
Boesiger
,
P.
, 2007, “
Mixing and Modes of Mass Transfer in the Third Cerebral Ventricle: A Computational Analysis
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
695
702
.
6.
Misra
,
A.
,
Ganesh
,
S.
,
Shahiwala
,
A.
, and
Shah
,
S. P.
, 2003, “
Drug Delivery to the Central Nervous System: A Review
,”
J. Pharm. Pharm. Sci.
1482-1826,
6
(
2
), pp.
252
273
.
7.
Askar
,
F. Z.
,
Kocabas
,
S.
,
Yucel
,
S.
,
Samancilar
,
O.
,
Cetin
,
H.
, and
Uyar
,
M.
, 2007, “
The Efficacy of Intrathecal Morphine in Post-Thoracotomy Pain Management
,”
J. Int. Med. Res.
0300-0605,
35
(
3
), pp.
314
322
.
8.
Lipp
,
J.
, 1991, “
Possible Mechanisms of Morphine Analgesia
,”
Clin. Neuropharmacol
0362-5664,
14
(
2
), pp.
131
147
.
9.
Stearns
,
L.
,
Boortz-Marx
,
R.
,
Du Pen
,
S.
,
Friehs
,
G.
,
Gordon
,
M.
,
Halyard
,
M.
,
Herbst
,
L.
, and
Kiser
,
J.
, 2005, “
Intrathecal Drug Delivery for the Management of Cancer Pain: A Multidisciplinary Consensus of Best Clinical Practices
,”
The Journal of Supportive Oncology
,
3
(
6
), pp.
399
408
.
10.
Ochiai
,
H.
,
Pernell
,
C. T.
,
Archer
,
G. E.
,
Chewning
,
T. A.
,
McLendon
,
R. E.
,
Friedman
,
H. S.
, and
Sampson
,
J. H.
, 2006, “
Treatment of Neoplastic Meningitis With Intrathecal 9-Nitro-Camptothecin
,”
Neurol. Med. Chir. (Tokyo)
0387-2572,
46
(
10
), pp.
485
489
.
11.
Richard
,
I.
, and
Menei
,
P.
, 2007, “
Intrathecal Baclofen in the Treatment of Spasticity, Dystonia and Vegetative Disorders
,”
Acta Neurochir.
0001-6268,
97
, pp.
213
218
.
12.
Munsat
,
T. L.
,
Taft
,
J.
,
Kasdon
,
D.
, and
Jackson
,
I. M.
, 1988, “
Prolonged Intrathecal Infusion of Thyrotropin Releasing Hormone in Amyotrophic Lateral Sclerosis
,”
Ann. N.Y. Acad. Sci.
0077-8923,
531
, pp.
187
193
.
13.
Drake
,
J. M.
, and
Sainte-Rose
,
C.
, 1995,
The Shunt Book
,
Blackwell Scientific
,
New York
.
14.
Greitz
,
D.
, 2006, “
Unraveling the Riddle of Syringomyelia
,”
Neurosurg. Rev.
0344-5607,
29
(
4
), pp.
251
263
.
15.
Martin
,
B. A.
,
Kalata
,
W.
,
Loth
,
F.
,
Royston
,
T. J.
, and
Oshinski
,
J. N.
, 2005, “
Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1110
1120
.
16.
Lakin
,
W. D.
,
Stevens
,
S. A.
,
Tranmer
,
B. I.
, and
Penar
,
P. L.
, 2003, “
A Whole-Body Mathematical Model for Intracranial Pressure Dynamics
,”
J. Math. Biol.
0303-6812,
46
(
4
), pp.
347
383
.
17.
Chang
,
H. S.
, and
Nakagawa
,
H.
, 2003, “
Hypothesis on the Pathophysiology of Syringomyelia Based on Simulation of Cerebrospinal Fluid Dynamics
,”
J. Neurol., Neurosurg. Psychiatry
0022-3050,
74
(
3
), pp.
344
347
.
18.
Eklund
,
A.
,
Smielewski
,
P.
,
Chambers
,
I.
,
Alperin
,
N.
,
Malm
,
J.
,
Czosnyka
,
M.
, and
Marmarou
,
A.
, 2007, “
Assessment of Cerebrospinal Fluid Outflow Resistance
,”
Med. Biol. Eng. Comput.
0140-0118,
45
(
8
), pp.
719
735
.
19.
Aroussi
,
A.
,
Zainy
,
M.
, and
Vloeberghs
,
M.
, 2000, “
Cerebrospinal Fluid Dynamics in the Aqueduct of Sylvius
,”
International Symposium on Flow Visualization
, pp.
1
11
.
20.
Fin
,
L.
, and
Grebe
,
R.
, 2003, “
Three Dimensional Modeling of the Cerebrospinal Fluid Dynamics and Brain Interactions in the Aqueduct of Sylvius
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
6
(
3
), pp.
163
170
.
21.
Jacobson
,
E. E.
,
Fletcher
,
D. F.
,
Morgan
,
M. K.
, and
Johnston
,
I. H.
, 1996, “
Fluid Dynamics of the Cerebral Aqueduct
,”
Pediatr. Neurosurg.
1016-2291,
24
(
5
), pp.
229
236
.
22.
Jacobson
,
E. E.
,
Fletcher
,
D. F.
,
Morgan
,
M. K.
, and
Johnston
,
I. H.
, 1999, “
Computer Modelling of the Cerebrospinal Fluid Flow Dynamics of Aqueduct Stenosis
,”
Med. Biol. Eng. Comput.
0140-0118,
37
(
1
), pp.
59
63
.
23.
Kurtcuoglu
,
V.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2005, “
Computational Modeling of the Mechanical Behavior of the Cerebrospinal Fluid System
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
264
269
.
24.
Kurtcuoglu
,
V.
,
Soellinger
,
M.
,
Summers
,
P.
,
Boomsma
,
K.
,
Poulikakos
,
D.
,
Boesiger
,
P.
, and
Ventikos
,
Y.
, 2005, “
Reconstruction of Cerebrospinal Fluid Flow in the Third Ventricle Based on MRI Data
,” Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005: 8th International Conference, Palm Springs,
Lect. Notes Comput. Sci.
0302-9743,
3749
, pp.
786
793
.
25.
Kurtcuoglu
,
V.
,
Soellinger
,
M.
,
Summers
,
P.
,
Boomsma
,
K.
,
Poulikakos
,
D.
,
Boesiger
,
P.
, and
Ventikos
,
Y.
, 2007, “
Computational Investigation of Subject-Specific Cerebrospinal Fluid Flow in the Third Ventricle and Aqueduct of Sylvius
,”
J. Biomech.
0021-9290,
40
(
6
), pp.
1235
1245
.
26.
Jacobson
,
E. E.
,
Fletcher
,
D. F.
,
Johnston
,
I. H.
, and
Morgan
,
M. K.
, 1999, “
Computer Modelling of CSF Flow in the Subarachnoid Space
,”
J. Neuropsychiatry Clin. Neurosci.
0895-0172,
6
(
6
), pp.
498
500
.
27.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Modeling of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
1
), pp.
71
79
.
28.
Stockman
,
H. W.
, 2006, “
Effect of Anatomical Fine Structure on the Flow of Cerebrospinal Fluid in the Spinal Subarachnoid Space
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
106
114
.
29.
Zhu
,
D. C.
,
Xenos
,
M.
,
Linninger
,
A. A.
, and
Penn
,
R. D.
, 2006, “
Dynamics of Lateral Ventricle and Cerebrospinal Fluid in Normal and Hydrocephalic Brains
,”
J. Magn. Reson Imaging
1053-1807,
24
(
4
), pp.
756
770
.
30.
Linninger
,
A. A.
,
Xenos
,
M.
,
Zhu
,
D. C.
,
Somayaji
,
M. R.
,
Kondapalli
,
S.
, and
Penn
,
R. D.
, 2007, “
Cerebrospinal Fluid Flow in the Normal and Hydrocephalic Human Brain
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
2
), pp.
291
302
.
31.
Linninger
,
A. A.
,
Tsakiris
,
C.
,
Zhu
,
D. C.
,
Xenos
,
M.
,
Roycewicz
,
P.
,
Danziger
,
Z.
, and
Penn
,
R.
, 2005, “
Pulsatile Cerebrospinal Fluid Dynamics in the Human Brain
,”
IEEE Trans. Biomed. Eng.
0018-9294,
52
(
4
), pp.
557
565
.
32.
Killer
,
H. E.
,
Laeng
,
H. R.
,
Flammer
,
J.
, and
Groscurth
,
P.
, 2003, “
Architecture of Arachnoid Trabeculae, Pillars, and Septa in the Subarachnoid Space of the Human Optic Nerve: Anatomy and Clinical Considerations
,”
Br. J. Ophthamol.
0007-1161,
87
(
6
), pp.
777
781
.
33.
Tada
,
Y.
, and
Nagashima
,
T.
, 1994, “
Modeling and Simulation of Brain-Lesions by the Finite-Element Method
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
13
(
4
), pp.
497
503
.
34.
Pinna
,
G.
,
Alessandrini
,
F.
,
Alfieri
,
A.
,
Rossi
,
M.
, and
Bricolo
,
A.
, 2000, “
Cerebrospinal Fluid Flow Dynamics Study in Chiari I Malformation: Implications for Syrinx Formation
,”
Neurosurg. Focus
,
8
(
3
), p.
E3
.
35.
Lim
,
J. S.
, 1990,
Two-Dimensional Signal and Image Processing
,
Prentice-Hall International
,
London
.
36.
Brinkman
,
H. C.
, 1948, “
On the Permeability of Media Consisting of Closely Packed Porous Particles
,”
Appl. Sci. Res., Sect. A
0365-7132,
1
(
2
), pp.
81
86
.
37.
Vandenwesthuizen
,
J.
, and
Duplessis
,
J. P.
, 1994, “
Quantification of Unidirectional Fiber Bed Permeability
,”
J. Compos. Mater.
0021-9983,
28
(
7
), pp.
619
637
.
38.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
6
), pp.
825
834
.
39.
Prieur du Plessis
,
J.
, 1997,
Fluid Transport in Porous Media
,
Computational Mechanics
,
Southampton
.
40.
Warming
,
R. F.
, and
Beam
,
R. M.
, 1976, “
Upwind 2nd-Order Difference Schemes and Applications in Aerodynamic Flows
,”
AIAA J.
0001-1452,
14
(
9
), pp.
1241
1249
.
41.
Vandoormaal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the Simple Method for Predicting Incompressible Fluid-Flows
,”
Numer. Heat Transfer
0149-5720,
7
(
2
), pp.
147
163
.
42.
Rauch
,
R. D.
,
Batira
,
J. T.
, and
Yang.
,
N. T. Y.
, 1991, “
Spatial Adaption Procedures on Unstructured Meshes for Accurate Unsteady Aerodynamic Flow Computations
,” AIAA Paper No. AIAA-91-1106.
43.
Hayman
,
L. A.
,
Evans
,
R. A.
, and
Hinck
,
V. C.
, 1979, “
Choroid Plexus of the Fourth Ventricle: A Useful CT Landmark
,”
AJR, Am. J. Roentgenol.
0361-803X,
133
(
2
), pp.
285
288
.
44.
Pope
,
W.
, 1998, “
External Ventriculostomy: A Practical Application for the Acute Care Nurse
,”
J. Neurosci. Nurs.
0888-0395,
30
(
3
), pp.
185
190
.
45.
Toga
,
A. W.
, and
Thompson
,
P. M.
, 2003, “
Mapping Brain Asymmetry
,”
Nature Reviews Neuroscience
,
4
(
1
), pp.
37
48
.
46.
Gideon
,
P.
,
Stahlberg
,
F.
,
Thomsen
,
C.
,
Gjerris
,
F.
,
Sorensen
,
P. S.
, and
Henriksen
,
O.
, 1994, “
Cerebrospinal Fluid Flow and Production in Patients With Normal Pressure Hydrocephalus Studied by MRI
,”
Neurosci. Res. (N Y)
0077-7846,
36
(
3
), pp.
210
215
.
47.
Silverberg
,
G. D.
,
Heit
,
G.
,
Huhn
,
S.
,
Jaffe
,
R. A.
,
Chang
,
S. D.
,
Bronte-Stewart
,
H.
,
Rubenstein
,
E.
,
Possin
,
K.
, and
Saul
,
T. A.
, 2001, “
The Cerebrospinal Fluid Production Rate is Reduced in Dementia of the Alzheimer’S Type
,”
Neurology
0028-3878,
57
(
10
), pp.
1763
1766
.
48.
Feinberg
,
D. A.
, and
Mark
,
A. S.
, 1987, “
Human Brain Motion and Cerebrospinal Fluid Circulation Demonstrated With MR Velocity Imaging
,”
Radiology
0033-8419,
163
(
3
), pp.
793
799
.
49.
Greitz
,
D.
, 2004, “
Radiological Assessment of Hydrocephalus: New Theories and Implications for Therapy
,”
Neurosurg. Rev.
0344-5607,
27
(
3
), pp.
145
165
.
50.
Soellinger
,
M.
,
Ryf
,
S.
,
Boesiger
,
P.
, and
Kozerke
,
S.
, 2007, “
Assessment of Human Brain Motion Using CSPAMM
,”
J. Magn. Reson Imaging
1053-1807,
25
(
4
), pp.
709
714
.
51.
Soellinger
,
M.
,
Rutz
,
A.
,
Boesiger
,
P.
, and
Kozerke
,
S.
, 2007, “
Time-Resolved, Three-Dimensional Brain Motion Measurements Using 3D-DENSE
,”
Proc. Intl. Soc. Mag. Reson. Med.
,
15
, 3005, 15th Scientific Meeting of the International Society of Magnetic Resonance Imaging in Medicine (ISMRM), Berlin, Germany, May 19–25.
52.
Wetzel
,
S.
,
Meckel
,
S.
,
Frydrychowicz
,
A.
,
Bonati
,
L.
,
Radue
,
E. W.
,
Scheffler
,
K.
,
Hennig
,
J.
, and
Markl
,
M.
, 2007, “
In Vivo Assessment and Visualization of Intracranial Arterial Hemodynamics With Flow-Sensitized 4D MR Imaging at 3T
,”
AJNR Am. J. Neuroradiol.
0195-6108,
28
(
3
), pp.
433
438
.
53.
Gresho
,
P. M.
, and
Sani
,
R. L.
, 1987, “
On Pressure Boundary-Conditions for the Incompressible Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
7
(
10
), pp.
1111
1145
.
You do not currently have access to this content.