It has long been known that the bone adapts according to the local mechanical environment. To date, however, a model for studying the effects of functional mechanical loading on tissue-engineered bone repair in vivo has not yet been established. We have developed a rat femoral defect model, in which ambulatory loads are transduced through the implanted tissue-engineered construct to elucidate the role of the mechanical environment in functional restoration of a large bone defect. This model uses compliant fixation plates with integrated elastomeric segments, which allow transduction of ambulatory loads. Multiaxially and uniaxially compliant plates were characterized by mechanical testing and evaluated using in vivo pilot studies. In the first study, experimental limbs were implanted with multiaxial plates, which have a low stiffness in multiple loading modes. In the second study, experimental limbs were stabilized by a uniaxial plate, which allowed only axial deformation of the defect. X-ray scans and mechanical testing revealed that the multiaxial plates were insufficient to stabilize the defect and prevent fracture under ambulatory loads as a result of low flexural and torsional stiffness. The uniaxial plates, however, maintained integrity of the defect when implanted over a 12 week period. Postmortem microCT scans revealed a 19% increase in bone volume in the axially loaded limb compared with the contralateral standard control, and postmortem mechanical testing indicated that torsional strength and stiffness were increased 25.6- and 3.9-fold, respectively, compared with the control. Finite element modeling revealed high strain gradients in the soft tissue adjacent to the newly formed bone within the implanted construct. This study introduces an in vivo model for studying the effects of physiological mechanical loading on tissue-engineered bone repair. Preliminary results using this new in vivo model with the uniaxially compliant plate showed positive effects of load-bearing on functional defect repair.

1.
Langer
,
R.
, and
Vacanti
,
J. P.
, 1993, “
Tissue Engineering
,”
Science
0036-8075,
260
(
5110
), pp.
920
926
.
2.
Duty
,
A. O.
,
Oest
,
M. E.
, and
Guldberg
,
R. E.
, 2007, “
Cyclic Mechanical Compression Increases Mineralization of Cell-Seeded Polymer Scaffolds In Vivo
,”
J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
531
539
.
3.
Robling
,
A. G.
,
Castillo
,
A. B.
, and
Turner
,
C. H.
, 2006, “
Biomechanical and Molecular Regulation of Bone Remodeling
,”
Annu. Rev. Biomed. Eng.
1523-9829,
8
, pp.
455
498
.
4.
Claes
,
L. E.
,
Wilke
,
H. J.
,
Augat
,
P.
,
Rubenacker
,
S.
, and
Margevicius
,
K. J.
, 1995, “
Effect of Dynamization on Gap Healing of Diaphyseal Fractures Under External Fixation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
10
(
5
), pp.
227
234
.
5.
Goldstein
,
S. A.
, 2006, “
Tissue Engineering Solutions for Traumatic Bone Loss
,”
J. Am. Acad. Orthop. Surg.
1067-151X,
14
(
10
), pp.
S152
156
.
6.
Ito
,
H.
,
Koefoed
,
M.
,
Tiyapatanaputi
,
P.
,
Gromov
,
K.
,
Goater
,
J. J.
,
Carmouche
,
J.
,
Zhang
,
X.
,
Rubery
,
P. T.
,
Rabinowitz
,
J.
,
Samulski
,
R. J.
,
Nakamura
,
T.
,
Soballe
,
K.
,
O'Keefe
,
R. J.
,
Boyce
,
B. F.
, and
Schwarz
,
E. M.
, 2005, “
Remodeling of Cortical Bone Allografts Mediated by Adherent rAAV-RANKL and VEGF Gene Therapy
,”
Nat. Med.
1078-8956,
11
(
3
), pp.
291
297
.
7.
Lin
,
A. S.
,
Barrows
,
T. H.
,
Cartmell
,
S. H.
, and
Guldberg
,
R. E.
, 2003, “
Microarchitectural and Mechanical Characterization of Oriented Porous Polymer Scaffolds
,”
Biomaterials
0142-9612,
24
(
3
), pp.
481
489
.
8.
Oest
,
M. E.
,
Dupont
,
K. M.
,
Kong
,
H. J.
,
Mooney
,
D. J.
, and
Guldberg
,
R. E.
, 2007, “
Quantitative Assessment of Scaffold and Growth Factor-Mediated Repair of Critically Sized Bone Defects
,”
J. Orthop. Res.
0736-0266,
25
(
7
), pp.
941
950
.
9.
Rai
,
B.
,
Oest
,
M. E.
,
Dupont
,
K. M.
,
Ho
,
K. H.
,
Teoh
,
S. H.
, and
Guldberg
,
R. E.
, 2007, “
Combination of Platelet-Rich Plasma With Polycaprolactone-Tricalcium Phosphate Scaffolds for Segmental Bone Defect Repair
,”
J. Biomed. Mater. Res. Part A
1549-3296,
81
(
4
), pp.
888
899
.
10.
Koontz
,
J. T.
,
Charras
,
G. T.
, and
Guldberg
,
R. E.
, 2001, “
A Microstructural Finite Element Simulation of Mechanically Induced Bone Formation
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
607
612
.
11.
Turner
,
C. H.
, and
Pavalko
,
F. M.
, 1998, “
Mechanotransduction and Functional Response of the Skeleton to Physical Stress: The Mechanisms and Mechanics of Bone Adaptation
,”
J. Orthop. Sci.
0949-2658,
3
(
6
), pp.
346
355
.
12.
Xie
,
L.
,
Jacobson
,
J. M.
,
Choi
,
E. S.
,
Busa
,
B.
,
Donahue
,
L. R.
,
Miller
,
L. M.
,
Rubin
,
C. T.
, and
Judex
,
S.
, 2006, “
Low-Level Mechanical Vibrations Can Influence Bone Resorption and Bone Formation in the Growing Skeleton
,”
Bone
,
39
(
5
), pp.
1059
1066
. 8756-3282
13.
Kim
,
C. H.
,
Takai
,
E.
,
Zhou
,
H.
,
von Stechow
,
D.
,
Muller
,
R.
,
Dempster
,
D. W.
, and
Guo
,
X. E.
, 2003, “
Trabecular Bone Response to Mechanical and Parathyroid Hormone Stimulation: The Role of Mechanical Microenvironment
,”
J. Bone Miner. Res.
0884-0431,
18
(
12
), pp.
2116
2125
.
14.
Noble
,
B. S.
,
Peet
,
N.
,
Stevens
,
H. Y.
,
Brabbs
,
A.
,
Mosley
,
J. R.
,
Reilly
,
G. C.
,
Reeve
,
J.
,
Skerry
,
T. M.
, and
Lanyon
,
L. E.
, 2003, “
Mechanical Loading: Biphasic Osteocyte Survival and Targeting of Osteoclasts for Bone Destruction in Rat Cortical Bone
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
284
(
4
), pp.
C934
943
.
15.
Lanyon
,
L. E.
, 1992, “
The Success and Failure of the Adaptive Response to Functional Load-Bearing in Averting Bone Fracture
,”
Bone
,
13
(
2
), pp.
S17
21
. 8756-3282
16.
Lee
,
K. C.
,
Maxwell
,
A.
, and
Lanyon
,
L. E.
, 2002, “
Validation of a Technique for Studying Functional Adaptation of the Mouse Ulna in Response to Mechanical Loading
,”
Bone
,
31
(
3
), pp.
407
412
. 8756-3282
17.
Mosley
,
J. R.
, and
Lanyon
,
L. E.
, 1998, “
Strain Rate as a Controlling Influence on Adaptive Modeling in Response to Dynamic Loading of the Ulna in Growing Male Rats
,”
Bone
,
23
(
4
), pp.
313
318
. 8756-3282
18.
Mosley
,
J. R.
,
March
,
B. M.
,
Lynch
,
J.
, and
Lanyon
,
L. E.
, 1997, “
Strain Magnitude Related Changes in Whole Bone Architecture in Growing Rats
,”
Bone
,
20
(
3
), pp.
191
198
. 8756-3282
19.
Robling
,
A. G.
,
Burr
,
D. B.
, and
Turner
,
C. H.
, 2000, “
Partitioning a Daily Mechanical Stimulus Into Discrete Loading Bouts Improves the Osteogenic Response to Loading
,”
J. Bone Miner. Res.
0884-0431,
15
(
8
), pp.
1596
1602
.
20.
Goodship
,
A. E.
, and
Kenwright
,
J.
, 1985, “
The Influence of Induced Micromovement Upon the Healing of Experimental Tibial Fractures
,”
J. Bone Joint Surg. Br.
0301-620X,
67
(
4
), pp.
650
655
.
21.
Kenwright
,
J.
, and
Gardner
,
T.
, 1998, “
Mechanical Influences on Tibial Fracture Healing
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
, pp.
S179
S190
.
22.
Kenwright
,
J.
,
Richardson
,
J. B.
,
Cunningham
,
J. L.
,
White
,
S. H.
,
Goodship
,
A. E.
,
Adams
,
M. A.
,
Magnussen
,
P. A.
, and
Newman
,
J. H.
, 1991, “
Axial Movement and Tibial Fractures. A Controlled Randomised Trial of Treatment
,”
J. Bone Joint Surg. Br.
0301-620X,
73
(
4
), pp.
654
659
.
23.
Hente
,
R.
,
Cordey
,
J.
, and
Perren
,
S. M.
, 2003, “
In Vivo Measurement of Bending Stiffness in Fracture Healing
,”
Biomed. Eng. Online
1475-925X,
2
, p.
8
.
24.
Carter
,
D. R.
,
Beaupre
,
G. S.
,
Giori
,
N. J.
, and
Helms
,
J. A.
, 1998, “
Mechanobiology of Skeletal Regeneration
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
, pp.
S41
S55
.
25.
Claes
,
L. E.
,
Heigele
,
C. A.
,
Neidlinger-Wilke
,
C.
,
Kaspar
,
D.
,
Seidl
,
W.
,
Margevicius
,
K. J.
, and
Augat
,
P.
, 1998, “
Effects of Mechanical Factors on the Fracture Healing Process
,”
Clin. Orthop. Relat. Res.
0009-921X,
355
, pp.
S132
S147
.
26.
Augat
,
P.
,
Margevicius
,
K.
,
Simon
,
J.
,
Wolf
,
S.
,
Suger
,
G.
, and
Claes
,
L.
, 1998, “
Local Tissue Properties in Bone Healing: Influence of Size and Stability of the Osteotomy Gap
,”
J. Orthop. Res.
0736-0266,
16
(
4
), pp.
475
481
.
27.
Augat
,
P.
,
Merk
,
J.
,
Wolf
,
S.
, and
Claes
,
L.
, 2001, “
Mechanical Stimulation by External Application of Cyclic Tensile Strains Does Not Effectively Enhance Bone Healing
,”
J. Orthop. Trauma
0890-5339,
15
(
1
), pp.
54
60
.
28.
Perren
,
S. M.
, 1979, “
Physical and Biological Aspects of Fracture Healing With Special Reference to Internal Fixation
,”
Clin. Orthop. Relat. Res.
0009-921X,
138
, pp.
175
196
.
29.
Perren
,
S. M.
, and
Rahn
,
B. A.
, 1980, “
Biomechanics of Fracture Healing
,”
Can. J. Surg.
0008-428X,
23
(
3
), pp.
228
232
.
30.
Guldberg
,
R. E.
,
Caldwell
,
N. J.
,
Guo
,
X. E.
,
Goulet
,
R. W.
,
Hollister
,
S. J.
, and
Goldstein
,
S. A.
, 1997, “
Mechanical Stimulation of Tissue Repair in the Hydraulic Bone Chamber
,”
J. Bone Miner. Res.
0884-0431,
12
(
8
), pp.
1295
1302
.
31.
Case
,
N. D.
,
Duty
,
A. O.
,
Ratcliffe
,
A.
,
Muller
,
R.
, and
Guldberg
,
R. E.
, 2003, “
Bone Formation on Tissue-Engineered Cartilage Constructs In Vivo: Effects of Chondrocyte Viability and Mechanical Loading
,”
Tissue Eng.
1076-3279,
9
(
4
), pp.
587
596
.
32.
Takai
,
E.
,
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Guo
,
X. E.
, 2004, “
Osteocyte Viability and Regulation of Osteoblast Function in a 3D Trabecular Bone Explant Under Dynamic Hydrostatic Pressure
,”
J. Bone Miner. Res.
0884-0431,
19
(
9
), pp.
1403
1410
.
You do not currently have access to this content.