Age-dependent outcomes following traumatic brain injury motivate the study of brain injury biomechanics in experimental animal models at different stages of development. Finite element models of the rat brain are used to better understand the mechanical mechanisms behind these age-dependent outcomes; however, age- and region-specific rat brain tissue mechanical properties are required for biofidelity in modeling. Here, we have used the atomic force microscope (AFM) to measure region-dependent mechanical properties for subregions of the cortex and hippocampus in P10, P17, and adult rats. Apparent elastic modulus increased nonlinearly with indentation strain, and a nonlinear Ogden hyperelastic model was used to fit the force-deflection data. Subregional heterogeneous distributions of mechanical properties changed significantly with age. Apparent elastic modulus was also found to increase overall with age, increasing by >100% between P10 and adult rats. Unconfined compression tests (ε=0.3) were performed on whole slices of the hippocampus and cortex of P10, P17, and adult rats to verify the mechanical properties measured with the AFM. Mean apparent elastic modulus at an indentation strain of 30% from AFM measurements for each region and age correlated well with the long-term elastic modulus measured from 30% unconfined compression tests (slope not significantly different from 1, p>0.05). Protein, lipid, and sulfated glycosaminoglycan content of the brain increased with age and were positively correlated with tissue stiffness, whereas water content decreased with age and was negatively correlated with tissue stiffness. These correlations can be used to hypothesize mechanistic models for describing the mechanical behavior of brain tissue as well as to predict relative differences between brain tissue mechanical properties of other species, at different ages, and for different regions based on differences in tissue composition.

1.
Morales
,
D. M.
,
Marklund
,
N.
,
Lebold
,
D.
,
Thompson
,
H. J.
,
Pitkanen
,
A.
,
Maxwell
,
W. L.
,
Longhi
,
L.
,
Laurer
,
H.
,
Maegele
,
M.
,
Neugebauer
,
E.
,
Graham
,
D. I.
,
Stocchetti
,
N.
, and
McIntosh
,
T. K.
, 2005, “
Experimental Models of Traumatic Brain Injury: Do We Really Need to Build a Better Mousetrap?
,”
Neuroscience (Oxford)
0306-4522,
136
(
4
), pp.
971
989
.
2.
Fijalkowski
,
R. J.
,
Stemper
,
B. D.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Crowe
,
M. J.
, and
Gennarelli
,
T. A.
, 2007, “
New Rat Model for Diffuse Brain Injury Using Coronal Plane Angular Acceleration
,”
J. Neurotrauma
0897-7151,
24
(
8
), pp.
1387
1398
.
3.
Elkin
,
B. S.
,
Azeloglu
,
E. U.
,
Costa
,
K. D.
, and
Morrison
,
B.
, 2007, “
Mechanical Heterogeneity of the Rat Hippocampus Measured by Atomic Force Microscope Indentation
,”
J. Neurotrauma
0897-7151,
24
(
5
), pp.
812
822
.
4.
Gefen
,
A.
,
Gefen
,
N.
,
Zhu
,
Q. L.
,
Raghupathi
,
R.
, and
Margulies
,
S. S.
, 2003, “
Age-Dependent Changes in Material Properties of the Brain and Braincase of the Rat
,”
J. Neurotrauma
0897-7151,
20
(
11
), pp.
1163
1177
.
5.
Langlois
,
J. A.
,
Rutland-Brown
,
W.
, and
Thomas
,
K. E.
, 2006, “
Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths
,”
Centers for Disease Control and Prevention, National Center for Injury Prevention and Control
, Atlanta, GA.
6.
Bruce
,
D. A.
, 1990, “
Head Injuries in the Pediatric Population
,”
Curr. Probl Pediatr.
0045-9380,
20
(
2
), pp.
66
107
.
7.
Pascucci
,
R. C.
, 1988, “
Head Trauma in the Child
,”
Intensive Care Med.
0342-4642,
14
(
3
), pp.
185
195
.
8.
Anderson
,
V.
,
Catroppa
,
C.
,
Morse
,
S.
,
Haritou
,
F.
, and
Rosenfeld
,
J.
, 2005, “
Functional Plasticity or Vulnerability After Early Brain Injury?
,”
Pediatrics
0031-4005,
116
(
6
), pp.
1374
1382
.
9.
Prins
,
M. L.
,
Lee
,
S. M.
,
Cheng
,
C. L.
,
Becker
,
D. P.
, and
Hovda
,
D. A.
, 1996, “
Fluid Percussion Brain Injury in the Developing and Adult Rat: A Comparative Study of Mortality, Morphology, Intracranial Pressure and Mean Arterial Blood Pressure
,”
Brain Res. Dev. Brain Res.
0165-3806,
95
(
2
), pp.
272
282
.
10.
Prins
,
M. L.
, and
Hovda
,
D. A.
, 1998, “
Traumatic Brain Injury in the Developing Rat: Effects of Maturation on Morris Water Maze Acquisition
,”
J. Neurotrauma
0897-7151,
15
(
10
), pp.
799
811
.
11.
Raghupathi
,
R.
, and
Huh
,
J. W.
, 2007, “
Diffuse Brain Injury in the Immature Rat: Evidence for an Age-at-Injury Effect on Cognitive Function and Histopathologic Damage
,”
J. Neurotrauma
0897-7151,
24
(
10
), pp.
1596
1608
.
12.
Huh
,
J. W.
,
Franklin
,
M. A.
,
Widing
,
A. G.
, and
Raghupathi
,
R.
, 2006, “
Regionally Distinct Patterns of Calpain Activation and Traumatic Axonal Injury Following Contusive Brain Injury in Immature Rats
,”
Dev. Neurosci. (Basel, Switz.)
0378-5866,
28
(
4–5
), pp.
466
476
.
13.
Giza
,
C. C.
, and
Prins
,
M. L.
, 2006, “
Is Being Plastic Fantastic? Mechanisms of Altered Plasticity After Developmental Traumatic Brain Injury
,”
Dev. Neurosci. (Basel, Switz.)
0378-5866,
28
(
4–5
), pp.
364
379
.
14.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
244
252
.
15.
Levchakov
,
A.
,
Linder-Ganz
,
E.
,
Raghupathi
,
R.
,
Margulies
,
S. S.
, and
Gefen
,
A.
, 2006, “
Computational Studies of Strain Exposures in Neonate and Mature Rat Brains During Closed Head Impact
,”
J. Neurotrauma
0897-7151,
23
(
10
), pp.
1570
1580
.
16.
Duhaime
,
A. C.
,
Margulies
,
S. S.
,
Durham
,
S. R.
,
O'Rourke
,
M. M.
,
Golden
,
J. A.
,
Marwaha
,
S.
, and
Raghupathi
,
R.
, 2000, “
Maturation-Dependent Response of the Piglet Brain to Scaled Cortical Impact
,”
J. Neurosurg.
0022-3085,
93
(
3
), pp.
455
462
.
17.
Elkin
,
B. S.
, and
Morrison
,
B.
, III
, 2007, “
Region-Specific Tolerance Criteria for the Living Brain
,”
Stapp Car Crash Journal
,
51
, pp.
127
138
. 1532-8546
18.
Cater
,
H. L.
,
Sundstrom
,
L. E.
, and
Morrison
,
B.
, III
, 2006, “
Temporal Development of Hippocampal Cell Death is Dependent on Tissue Strain but not Strain Rate
,”
J. Biomech.
0021-9290,
39
(
15
), pp.
2810
2818
.
19.
Zhang
,
J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Gennarelli
,
T. A.
, 2006, “
Role of Translational and Rotational Accelerations on Brain Strain in Lateral Head Impact
,”
Biomed. Sci. Instrum.
0067-8856,
42
, pp.
501
506
.
20.
Pena
,
A.
,
Pickard
,
J. D.
,
Stiller
,
D.
,
Harris
,
N. G.
, and
Schuhmann
,
M. U.
, 2005, “
Brain Tissue Biomechanics in Cortical Contusion Injury: A Finite Element Analysis
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
95
, pp.
333
336
.
21.
Mao
,
H.
,
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2006, “
Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat
,”
Stapp Car Crash Journal
,
50
, pp.
583
600
. 1532-8546
22.
Costa
,
K. D.
, and
Yin
,
F. C. P.
, 1999, “
Analysis of Indentation: Implications for Measuring Mechanical Properties With Atomic Force Microscopy
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
5
), pp.
462
471
.
23.
Morrison
,
B.
, III
,
Cater
,
H. L.
,
Benham
,
C. D.
, and
Sundstrom
,
L. E.
, 2006, “
An In Vitro Model of Traumatic Brain Injury Utilising Two-Dimensional Stretch of Organotypic Hippocampal Slice Cultures
,”
J. Neurosci. Methods
0165-0270,
150
(
2
), pp.
192
201
.
24.
Costa
,
K. D.
, 2003, “
Single-Cell Elastography: Probing for Disease With the Atomic Force Microscope
,”
Dis. Markers
0278-0240,
19
(
2–3
), pp.
139
154
.
25.
Darvish
,
K. K.
, and
Crandall
,
J. R.
, 2001, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
1350-4533,
23
(
9
), pp.
633
645
.
26.
Lippert
,
S. A.
,
Rang
,
E. M.
, and
Grimm
,
M. J.
, 2004, “
The High Frequency Properties of Brain Tissue
,”
Biorheology
0006-355X,
41
(
6
), pp.
681
691
.
27.
Johnson
,
K. L.
, 1970, “
Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids
0022-5096,
18
(
2
), pp.
115
126
.
28.
Lin
,
D. C.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
, 2007, “
Elasticity of Rubber-Like Materials Measured by AFM Nanoindentation
,”
eXPRESS Polymer Letters
,
1
(
9
), pp.
576
584
.
29.
Likhitpanichkul
,
M.
,
Guo
,
X.
, and
Mow
,
V. C.
, 2007, “
In Situ Transient Deformation of Chondrocytes Under Unconfined Compression: Experimental Measurements and Triphasic Finite Element Model
,”
Proceedings of the ASME 2007 Summer Bioengineering Conference
, Keystone, CO.
30.
Shigemori
,
Y.
,
Katayama
,
Y.
,
Mori
,
T.
,
Maeda
,
T.
, and
Kawamata
,
T.
, 2006, “
Matrix Metalloproteinase-9 Is Associated With Blood-Brain Barrier Opening and Brain Edema Formation After Cortical Contusion in Rats
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
96
, pp.
130
133
.
31.
Farndale
,
R. W.
,
Buttle
,
D. J.
, and
Barrett
,
A. J.
, 1986, “
Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue
,”
Biochim. Biophys. Acta
0006-3002,
883
(
2
), pp.
173
177
.
32.
Inouye
,
L. S.
, and
Lotufo
,
G. R.
, 2006, “
Comparison of Macro-Gravimetric and Micro-Colorimetric Lipid Determination Methods
,”
Talanta
0039-9140,
70
(
3
), pp.
584
587
.
33.
Riu
,
J.
, and
Rius
,
F. X.
, 1997, “
Method Comparison Using Regression With Uncertainties in Both Axes
,”
TrAC, Trends Anal. Chem.
0165-9936,
16
(
4
), pp.
211
216
.
34.
Martinez
,
A.
,
Riu
,
J.
, and
Rius
,
F. X.
, 2002, “
Evaluating Bias in Method Comparison Studies Using Linear Regression With Errors in Both Axes
,”
J. Chemom.
0886-9383,
16
(
1
), pp.
41
53
.
35.
Menon
,
D. K.
, 2009, “
Unique Challenges in Clinical Trials in Traumatic Brain Injury
,”
Crit. Care Med.
0090-3493,
37
(
1
), pp.
S129
S135
.
36.
Sabet
,
A. A.
,
Christoforou
,
E.
,
Zatlin
,
B.
,
Genin
,
G. M.
, and
Bayly
,
P. V.
, 2008, “
Deformation of the Human Brain Induced by Mild Angular Head Acceleration
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
307
315
.
37.
Bayly
,
P. V.
,
Black
,
E. E.
,
Pedersen
,
R. C.
,
Leister
,
E. P.
, and
Genin
,
G. M.
, 2006, “
In Vivo Imaging of Rapid Deformation and Strain in an Animal Model of Traumatic Brain Injury
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
1086
1095
.
38.
Kleiven
,
S.
, and
Hardy
,
W. N.
, 2002, “
Correlation of an FE Model of the Human Head With Local Brain Motion—Consequences for Injury Prediction
,”
Stapp Car Crash Journal
,
46
, pp.
123
144
. 1532-8546
39.
Hardy
,
W. N.
,
Foster
,
C. D.
,
Mason
,
M. J.
,
Yang
,
K. H.
,
King
,
A. I.
, and
Tashman
,
S.
, 2001, “
Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-Ray
,”
Stapp Car Crash Journal
,
45
, pp.
337
368
. 1532-8546
40.
Couper
,
Z.
, and
Albermani
,
F.
, 2008, “
Infant Brain Subjected to Oscillatory Loading: Material Differentiation, Properties, and Interface Conditions
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
2
), pp.
105
125
.
41.
Kleiven
,
S.
, 2007, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash Journal
,
51
, pp.
81
114
. 1532-8546
42.
Takhounts
,
E. G.
,
Eppinger
,
R. H.
,
Campbell
,
J. Q.
,
Tannous
,
R. E.
,
Power
,
E. D.
, and
Shook
,
L. S.
, 2003, “
On the Development of the SIMon Finite Element Head Model
,”
Stapp Car Crash Journal
,
47
, pp.
107
133
. 1532-8546
43.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
, 2001, “
Comparison of Brain Responses Between Frontal and Lateral Impacts by Finite Element Modeling
,”
J. Neurotrauma
0897-7151,
18
(
1
), pp.
21
30
.
44.
Zhou
,
C.
,
Khalil
,
T. B.
, and
King
,
A. I.
, 1995, “
A New Model Comparing Impact Responses of the Homogeneous and Inhomogeneous Human Brain
,”
Stapp Car Crash Journal
,
39
, pp.
121
137
. 1532-8546
45.
Hall
,
E. D.
,
Bryant
,
Y. D.
,
Cho
,
W.
, and
Sullivan
,
P. G.
, 2008, “
Evolution of Post-Traumatic Neurodegeneration After Controlled Cortical Impact Traumatic Brain Injury in Mice and Rats as Assessed by the De Olmos Silver and Fluorojade Staining Methods
,”
J. Neurotrauma
0897-7151,
25
(
3
), pp.
235
247
.
46.
Briscoe
,
B. J.
,
Sebastian
,
K. S.
, and
Adams
,
M. J.
, 1994, “
The Effect of Indenter Geometry on the Elastic Response to Indentation
,”
J. Phys. D
0022-3727,
27
(
6
), pp.
1156
1162
.
47.
Yoffe
,
E. H.
, 1984, “
Modified Hertz Theory for Spherical Indentation
,”
Philos. Mag. A
0141-8610,
50
(
6
), pp.
813
828
.
48.
Donnelly
,
B. R.
, and
Medige
,
J.
, 1997, “
Shear Properties of Human Brain Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
4
), pp.
423
432
.
49.
Takhounts
,
E. G.
,
Crandall
,
J. R.
, and
Darvish
,
K.
, 2003, “
On the Importance of Nonlinearity of Brain Tissue Under Large Deformations
,”
Stapp Car Crash Journal
,
47
, pp.
79
92
. 1532-8546
50.
Lin
,
D. C.
,
Shreiber
,
D. I.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
, 2008, “
Spherical Indentation of Soft Matter Beyond the Hertzian Regime: Numerical and Experimental Validation of Hyperelastic Models
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
(
5
), pp.
345
358
.
51.
Coats
,
B.
, and
Margulies
,
S. S.
, 2006, “
Material Properties of Porcine Parietal Cortex
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2521
2525
.
52.
Anderson
,
K. J.
,
Miller
,
K. M.
,
Fugaccia
,
I.
, and
Scheff
,
S. W.
, 2005, “
Regional Distribution of Fluoro-Jade B Staining in the Hippocampus Following Traumatic Brain Injury
,”
Exp. Neurol.
0014-4886,
193
(
1
), pp.
125
130
.
53.
Colicos
,
M. A.
,
Dixon
,
C. E.
, and
Dash
,
P. K.
, 1996, “
Delayed, Selective Neuronal Death Following Experimental Cortical Impact Injury in Rats: Possible Role in Memory Deficits
,”
Brain Res.
0006-8993,
739
(
1–2
), pp.
111
119
.
54.
Kim
,
B. T.
,
Raghavendra
,
V. L.
,
Sailor
,
K. A.
,
Bowen
,
K. K.
, and
Dempsey
,
R. J.
, 2001, “
Protective Effects of Glial Cell Line-Derived Neurotrophic Factor on Hippocampal Neurons After Traumatic Brain Injury in Rats
,”
J. Neurosurg.
0022-3085,
95
(
4
), pp.
674
679
.
55.
Scheff
,
S. W.
,
Price
,
D. A.
,
Hicks
,
R. R.
,
Baldwin
,
S. A.
,
Robinson
,
S.
, and
Brackney
,
C.
, 2005, “
Synaptogenesis in the Hippocampal CA1 Field Following Traumatic Brain Injury
,”
J. Neurotrauma
0897-7151,
22
(
7
), pp.
719
732
.
56.
Hicks
,
R.
,
Soares
,
H.
,
Smith
,
D.
, and
McIntosh
,
T.
, 1996, “
Temporal and Spatial Characterization of Neuronal Injury Following Lateral Fluid-Percussion Brain Injury in the Rat
,”
Acta Neuropathol.
,
91
(
3
), pp.
236
246
. 0001-6322
57.
Nicolle
,
S.
,
Lounis
,
M.
,
Willinger
,
R.
, and
Palierne
,
J. F.
, 2005, “
Shear Linear Behavior of Brain Tissue Over a Large Frequency Range
,”
Biorheology
0006-355X,
42
(
3
), pp.
209
223
.
58.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
N.
, 1997, “
Linear Viscoelastic Properties of Bovine Brain Tissue in Shear
,”
Biorheology
0006-355X,
34
(
6
), pp.
377
385
.
59.
Miller
,
K.
, 2005, “
Method of Testing Very Soft Biological Tissues in Compression
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
153
158
.
60.
Cheng
,
S.
, and
Bilston
,
L. E.
, 2007, “
Unconfined Compression of White Matter
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
117
124
.
61.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
, 2002, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
82
(
5
), pp.
2798
2810
.
62.
Mahaffy
,
R. E.
,
Shih
,
C. K.
,
MacKintosh
,
F. C.
, and
Kas
,
J.
, 2000, “
Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biological Cells
,”
Phys. Rev. Lett.
0031-9007,
85
(
4
), pp.
880
883
.
63.
Stolz
,
M.
,
Raiteri
,
R.
,
Daniels
,
A. U.
,
VanLandingham
,
M. R.
,
Baschong
,
W.
, and
Aebi
,
U.
, 2004, “
Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
86
(
5
), pp.
3269
3283
.
64.
O'Brien
,
J. S.
, and
Sampson
,
E. L.
, 1965, “
Lipid Composition of the Normal Human Brain: Gray Matter, White Matter, and Myelin
,”
J. Lipid Res.
0022-2275,
6
(
4
), pp.
537
544
.
65.
De Souza
,
S. W.
, and
Dobbing
,
J.
, 1971, “
Cerebral Edema in Developing Brain. I. Normal Water and Cation Content in Developing Rat Brain and Postmortem Changes
,”
Exp. Neurol.
0014-4886,
32
(
3
), pp.
431
438
.
66.
DiResta
,
G. R.
,
Lee
,
J. B.
, and
Arbit
,
E.
, 1991, “
Measurement of Brain Tissue Specific Gravity Using Pycnometry
,”
J. Neurosci. Methods
0165-0270,
39
(
3
), pp.
245
251
.
67.
Kreis
,
R.
,
Ernst
,
T.
, and
Ross
,
B. D.
, 1993, “
Development of the Human Brain: In Vivo Quantification of Metabolite and Water Content With Proton Magnetic Resonance Spectroscopy
,”
Magn. Reson. Med.
0740-3194,
30
(
4
), pp.
424
437
.
68.
Rice
,
D.
, and
Barone
,
S.
, Jr.
, 2000, “
Critical Periods of Vulnerability for the Developing Nervous System: Evidence From Humans and Animal Models
,”
Environ. Health Perspect.
0091-6765,
108
, pp.
511
533
.
69.
Shreiber
,
D. I.
,
Hao
,
H.
, and
Elias
,
R. A.
, 2008, “
Probing the Influence of Myelin and Glia on the Tensile Properties of the Spinal Cord
,”
Biomech. Model Mechanobiol.
,
8
(
4
), pp.
311
321
.
70.
Leterrier
,
J. F.
,
Kas
,
J.
,
Hartwig
,
J.
,
Vegners
,
R.
, and
Janmey
,
P. A.
, 1996, “
Mechanical Effects of Neurofilament Cross-Bridges. Modulation by Phosphorylation, Lipids, and Interactions With F-Actin
,”
J. Biol. Chem.
0021-9258,
271
(
26
), pp.
15687
15694
.
71.
Lopez-Picon
,
F. R.
,
Uusi-Oukari
,
M.
, and
Holopainen
,
I. E.
, 2003, “
Differential Expression and Localization of the Phosphorylated and Nonphosphorylated Neurofilaments During the Early Postnatal Development of Rat Hippocampus
,”
Hippocampus
1050-9631,
13
(
7
), pp.
767
779
.
72.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
73.
Oohira
,
A.
,
Matsui
,
F.
,
Matsuda
,
M.
, and
Shoji
,
R.
, 1986, “
Developmental Change in the Glycosaminoglycan Composition of the Rat Brain
,”
J. Neurochem.
0022-3042,
47
(
2
), pp.
588
593
.
74.
Margolis
,
R. U.
,
Margolis
,
R. K.
,
Chang
,
L. B.
, and
Preti
,
C.
, “1975, “
Glycosaminoglycans of Brain During Development
,”
Biochemistry
0006-2960,
14
(
1
), pp.
85
88
.
75.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2007, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
294
(
3
), pp.
H1197
1205
.
76.
Alvarado
,
M. V.
, and
Castejon
,
H. V.
, 1984, “
Histochemical Demonstration of Cytoplasmic Glycosaminoglycans in the Macroneurons of the Human Central Nervous System
,”
J. Neurosci. Res.
0360-4012,
11
(
1
), pp.
13
26
.
77.
Del Bigio
,
M. R.
, and
Enno
,
T. L.
, 2008, “
Effect of Hydrocephalus on Rat Brain Extracellular Compartment
,”
Cerebrospinal Fluid Res.
,
5
, pp.
12
23
. 1743-8454
78.
Overbeek
,
J. T. G.
, 1953, “
Donnan-EMF and Suspension Effect
,”
J. Coll. Sci., Imp. Univ. Tokyo
0368-2110,
8
(
6
), pp.
593
605
.
79.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
6
16
.
80.
Katta
,
J.
,
Stapleton
,
T.
,
Ingham
,
E.
,
Jin
,
Z. M.
, and
Fisher
,
J.
, 2008, “
The Effect of Glycosaminoglycan Depletion on the Friction and Deformation of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
1
), pp.
1
11
.
81.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
82.
Viano
,
D. C.
,
Casson
,
I. R.
,
Pellman
,
E. J.
,
Zhang
,
L.
,
King
,
A. I.
, and
Yang
,
K. H.
, 2005, “
Concussion in Professional Football: Brain Responses by Finite Element Analysis: Part 9
,”
Neurosurgery
0148-396X,
57
(
5
), pp.
891
916
.
83.
Brands
,
D. W. A.
,
Bovendeerd
,
P. H. M.
,
Peters
,
G. W. M.
, and
Wismans
,
J. S. H. M.
, 2000, “
The Large Strain Dynamic Behaviour of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material
,”
Proc. Stapp Car Crash Conf.
0585-086X,
44
, pp.
249
260
.
84.
Gefen
,
A.
, and
Margulies
,
S. S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
0021-9290,
37
(
9
), pp.
1339
1352
.
85.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
, 2007, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
0006-3495,
92
(
5
), pp.
1784
1791
.
86.
Lu
,
Y. B.
,
Franze
,
K.
,
Seifert
,
G.
,
Steinhauser
,
C.
,
Kirchhoff
,
F.
,
Wolburg
,
H.
,
Guck
,
J.
,
Janmey
,
P.
,
Wei
,
E. Q.
,
Kas
,
J.
, and
Reichenbach
,
A.
, 2006, “
Viscoelastic Properties of Individual Glial Cells and Neurons in the CNS
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
47
), pp.
17759
17764
.
87.
Mahaffy
,
R. E.
,
Park
,
S.
,
Gerde
,
E.
,
Kas
,
J.
, and
Shih
,
C. K.
, 2004, “
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
86
(
3
), pp.
1777
1793
.
88.
Zeng
,
K.
,
Breder
,
K.
,
Rowcliffe
,
D. J.
, and
Herrstrom
,
C.
, 1992, “
Elastic-Modulus Determined by Hertzian Indentation
,”
J. Mater. Sci.
0022-2461,
27
(
14
), pp.
3789
3792
.
89.
Xu
,
G.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
, 2008, “
Residual Stress in the Adult Mouse Brain
,”
Biomech. Model Mechanobiol.
,
8
(
4
), pp.
253
262
.
90.
Lei
,
F.
, and
Szeri
,
A. Z.
, 2007, “
Inverse Analysis of Constitutive Models: Biological Soft Tissues
,”
J. Biomech.
0021-9290,
40
(
4
), pp.
936
940
.
91.
Winick
,
M.
, 1968, “
Changes in Nucleic Acid and Protein Content of the Human Brain During Growth
,”
Pediatr. Res.
0031-3998,
2
(
5
), pp.
352
355
.
You do not currently have access to this content.