The cervix plays a crucial role in maintaining a healthy pregnancy, acting as a mechanical barrier to hold the fetus in utero during gestation. Altered mechanical properties of the cervical tissue are suspected to play a critical role in spontaneous preterm birth. Both MRI and X-ray data in the literature indicate that cervical stroma contains regions of preferentially aligned collagen fibers along anatomical directions (circumferential/longitudinal/radial). In this study, a mechanical testing protocol is developed to investigate the large-strain response of cervical tissue in uniaxial tension and compression along its three orthogonal anatomical directions. The stress response of the tissue along the different orthogonal directions is captured using a minimal set of model parameters generated by fitting a one-dimensional time-dependent rheological model to the experimental data. Using model parameters, mechanical responses can be compared between samples from patients with different obstetric backgrounds, between samples from different anatomical sites, and between the different loading directions for a single specimen. The results presented in this study suggest that cervical tissue is mechanically anisotropic with a uniaxial response dependent on the direction of loading, the anatomical site of the specimen, and the obstetric history of the patient. We hypothesize that the directionality of the tissue mechanical response is primarily due to collagen orientation in the cervical stroma, and provides an interpretation of our mechanical findings consistent with the literature data on preferential collagen alignment.

1.
Romero
,
R.
,
Espinoza
,
J.
,
Erez
,
O.
, and
Hassan
,
S.
, 2006, “
The Role of Cervical Cerclage in Obstetric Practice: Can the Patient Who Could Benefit From This Procedure be Identified?
Am. J. Obstet. Gynecol.
0002-9378,
194
, pp.
1
9
.
2.
Vidaeff
,
A.
, and
Ramin
,
S.
, 2006, “
From Concept to Practice: The Recent History of Preterm Delivery Prevention Part I: Cervical Competence
,”
Am. J. Perinatol
0735-1631,
23
(
1
), pp.
3
13
.
3.
Myers
,
K. M.
,
Socrate
,
S.
,
Tzeranis
,
D.
, and
House
,
M. D.
, 2009, “
Changes in the Biochemical Constituents and Morphologic Appearance of the Human Cervical Stroma During Pregnancy
,”
Eur. J. Obstet. Gynecol. Reprod. Biol.
0301-2115,
144
, pp.
S82
S89
.
4.
Danforth
,
D. N.
, 1974, “
The Effect of Pregnancy and Labor on the Human Cervix: Changes in Collagen, Glycoproteins, and Glycosaminoglycans
,”
Am. J. Obstet. Gynecol.
0002-9378,
120
(
3
), pp.
641
51
.
5.
Aspden
,
R. M.
, 1988, “
Collagen Organisation in the Cervix and Its Relation to Mechanical Function
,”
Coll. Relat. Res.
0174-173X,
8
, pp.
103
112
.
6.
Weiss
,
S.
,
Jaermann
,
T.
,
Schmid
,
P.
,
Staempfli
,
P.
,
Boesiger
,
P.
,
Niederer
,
P.
,
Caduff
,
R.
, and
Bajka
,
M.
, 2006, “
Three-Dimensional Fiber Architecture of the Nonpregnant Human Uterus Determined Ex Vivo Using Magnetic Resonance Diffusion Tensor Imaging
,”
Anat. Rec.
0003-276X,
288
(
1
), pp.
84
90
.
7.
Rechberger
,
T.
,
Uldbjerg
,
N.
, and
Oxlund
,
H.
, 1988, “
Connective Tissue Changes in the Cervix During Normal Pregnancy and Pregnancy Complicated by Cervical Incompetence
,”
Obstet. Gynecol. (N.Y., NY, U. S.)
0029-7844,
71
(
4
), pp.
563
567
.
8.
Uldbjerg
,
N.
,
Ekman
,
G.
,
Malmstrom
,
A.
,
Olsson
,
K.
, and
Ulmsten
,
U
, 1983, “
Ripening of the Human Uterine Cervix Related to Changes in Collagen, Glycosaminoglycans, and Collagenolytic Activity
,”
Am. J. Obstet. Gynecol.
0002-9378,
147
(
6
), pp.
662
666
.
9.
Myers
,
K. M.
,
Paskaleva
,
A.
,
House
,
M.
, and
Socrate
,
S.
, 2008, “
Mechanical and Biochemical Properties of Human Cervical Tissue
,”
Acta Biomater.
1742-7061,
4
, pp.
104
116
.
10.
Zlatnik
,
F. J.
, and
Burmeister
,
L. F.
, 1993, “
Interval Evaluation of the Cervix for Predicting Pregnancy Outcome and Diagnosing Cervical Incompetence
,”
J. Reprod. Med.
0024-7758,
38
(
5
), pp.
365
369
.
11.
Kiwi
,
R.
,
Neuman
,
M. R.
,
Merkatz
,
I. R.
,
Selim
,
M. A.
, and
Lysikiewicz
,
A.
, 1988, “
Determination of the Elastic Properties of the Cervix
,”
Obstet. Gynecol. (N.Y., NY, U. S.)
0029-7844,
71
(
4
), pp.
568
574
.
12.
Anthony
,
G. S.
,
Calder
,
A. A.
, and
Macnaughton
,
M. C.
, 1982, “
Cervical Resistance in Patients With Previous Spontaneous Mid-Trimester Abortion
,”
Br. J. Obstet. Gynaecol.
0306-5456,
89
(
12
), pp.
1046
1049
.
13.
Conrad
,
J. T.
,
Tokarzc
,
R. D.
, and
Williford
,
J. F.
, 1980, “
Anatomic Site and Stretch Modulus in the Human Cervix
,”
Dilatation of the Uterine Cervix: Connective Tissue Biology and Clinical Management
,
Raven
,
New York
, pp.
255
264
.
14.
Petersen
,
L. K.
,
Oxlund
,
H.
,
Uldbjerg
,
N.
, and
Forman
,
A.
, 1991, “
In Vitro Analysis of Muscular Contractile Ability and Passive Biomechanical Properties of Uterine Cervical Samples From Nonpregnant Women
,”
Obstet. Gynecol. (N.Y., NY, U. S.)
0029-7844,
77
(
5
), pp.
772
776
.
15.
Cabrol
,
D.
,
Jannetc
,
D.
,
Le Houezedc
,
R.
,
Dudzik
,
W.
,
Bonoris
,
E.
, and
Edard
,
L.
, 1990, “
Mechanical Properties of the Pregnant Human Uterine Cervix Use of an Instrument to Measure the Index of Cervix Distensibility
,”
Gynecol. Obstet. Invest.
0378-7346,
29
, pp.
32
36
.
16.
Mazza
,
E.
,
Nava
,
A.
,
Bauer
,
M.
,
Winter
,
R.
,
Bajka
,
M.
, and
Holzapfel
,
G. A.
, 2006, “
Mechanical Properties of the Human Uterine Cervix: An In Vivo Study
,”
Med. Image Anal.
1361-8415,
10
, pp.
125
136
.
17.
Parsons
,
E. M.
,
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Weinberg
,
M.
, 2005, “
Three-Dimensional Large-Strain Tensile Deformation of Neat and Calcium Carbonate-Filled High-Density Polyethylene
,”
Polymer
0032-3861,
46
(
7
), pp.
2257
2265
.
18.
Paskaleva
,
A.
, 2007, “
Biomechanics of Cervical Function in Pregnancy—Case of Cervical Insufficiency
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, http://hdl.handle.net/1721.1/42287http://hdl.handle.net/1721.1/42287
19.
Febvay
,
S.
,
Socrate
,
S.
, and
House
,
M. D.
, 2003, “
Biomechanical Modeling of Cervical Tissue: A Quantitative Investigation of Cervical Funneling
,”
Proceedings of the 2003 ASME International Mechanical Engineering Congress & Exposition
, Washington, DC, Nov. 16–21.
20.
Jordan
,
P.
,
Kerdok
,
A. E.
,
Howe
,
R. D.
, and
Socrate
,
S.
, 2009, “
Identifying a Minimal Rheological Configuration: A Tool for Effective and Efficient Constitutive Modeling of Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731, submitted.
21.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
Berlin
.
22.
Febvay
,
S.
, 2003, “
A Three-Dimensional Constitutive Model for the Mechanical Behavior of Cervical Tissue
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
23.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 1998, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
46
(
5
), pp.
931
954
.
24.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 2001, “
Constitutive Modeling of the Time-Dependent and Cyclic Loading of Elastomers and Application to Soft Biological Tissues
,”
Mech. Mater.
0167-6636,
33
(
9
), pp.
523
530
.
25.
Chahine
,
N. O.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
, pp.
1251
1261
.
26.
House
,
M.
, and
Socrate
,
S.
, 2006, “
The Cervix as a Biomechanical Structure
,”
Ultrasound Obstet. Gynecol.
0960-7692,
28
, pp.
745
749
.
You do not currently have access to this content.