Aortic valve (AV) stenosis, if untreated, leads to heart failure. From a mechanics standpoint, heart failure can be interpreted as the failure of the heart to generate sufficient power to overcome energy losses in the circulation. Thus, energy efficiency-based measures for evaluating AV performance and disease severity have the advantage of being a direct measure of the contribution of the AV hydrodynamic characteristics toward heart failure. We present a new method for computing the rate of energy dissipation as a function of systolic time, by modifying the Navier–Stokes momentum equation. This method preserves the dynamic term of the Navier–Stokes momentum equation, and allows the investigation of the trend of the rate of energy dissipation over time. This method is applied to a series of in vitro experiments, where a trimmed porcine valve is exposed to various conditions: varying stroke volumes (50 ml to 90 ml) at the fixed heart rate; varying heart rates (60–80 beats/min) at fixed stroke volume; and varying stenosis levels (normal, mild stenosis, moderate stenosis). The results are: (1) energy dissipation waveform has a distinctive pattern of being skewed toward late systole, due to flow instabilities during deceleration phases; (2) increasing heart rate and stroke volume increases energy dissipation, but the normalized shape of the energy dissipation waveform is preserved across heart rates and stroke volumes; (3) increasing stenosis level increases energy dissipation, and also alters the normalized shape of the energy dissipation waveform. Since stenosis produces a signature energy dissipation waveform shape, dynamic energy dissipation analysis can potentially be extended into a clinical tool for AV evaluation.

1.
Dasi
,
L. P.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Sundareswaran
,
K. S.
,
Krishnankutty
,
R.
,
Delnido
,
P. J.
, and
Yoganathan
,
A. P.
, 2009, “
Hemodynamic Energy Dissipation in the Cardiovascular System: Generalized Theoretical Analysis on Disease States
,”
Ann. Biomed. Eng.
0090-6964,
37
(
4
), pp.
661
673
.
2.
Fisher
,
J.
, and
Wheatley
,
D. J.
, 1988, “
Hydrodynamic Function of Ten Prosthetic Heart Valves in the Aortic Position
,”
Clin. Phys. Physiol. Meas.
0143-0815,
9
(
4
), pp.
307
317
.
3.
Heinrich
,
R. S.
,
Marcus
,
R. H.
,
Ensley
,
A. E.
,
Gibson
,
D. E.
, and
Yoganathan
,
A. P.
, 1999, “
Valve Orifice Area Alone Is an Insufficient Index of Aortic Stenosis Severity: Effects of the Proximal and Distal Geometry on Transaortic Energy Loss
,”
J. Heart Valve Dis.
0966-8519,
8
(
5
), pp.
509
515
.
4.
Hintz
,
S. R.
,
Van Meurs
,
K. P.
,
Perritt
,
R.
,
Poole
,
W. K.
,
Das
,
A.
,
Stevenson
,
D. K.
,
Ehrenkranz
,
R. A.
,
Lemons
,
J. A.
,
Vohr
,
B. R.
,
Heyne
,
R.
,
Childers
,
D. O.
,
Peralta-Carcelen
,
M.
,
Dusick
,
A.
,
Johnson
,
Y. R.
,
Morris
,
B.
,
Dillard
,
R.
,
Vaucher
,
Y.
,
Steichen
,
J.
,
Adams-Chapman
,
I.
,
Konduri
,
G.
,
Myers
,
G. J.
,
de Ungria
,
M.
,
Tyson
,
J. E.
, and
Higgins
,
R. D.
, 2007, “
Neurodevelopmental Outcomes of Premature Infants With Severe Respiratory Failure Enrolled in a Randomized Controlled Trial of Inhaled Nitric Oxide
,”
J. Pediatr. (St. Louis)
0022-3476,
151
(
1
), pp.
16
22
.
5.
Lloyd-Jones
,
D.
,
Adams
,
R.
,
Carnethon
,
M.
,
De Simone
,
G.
,
Ferguson
,
T. B.
,
Flegal
,
K.
,
Ford
,
E.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lackland
,
D.
,
Lisabeth
,
L.
,
Marelli
,
A.
,
McDermott
,
M.
,
Meigs
,
J.
,
Mozaffarian
,
D.
,
Nichol
,
G.
,
O'Donnell
,
C.
,
Roger
,
V.
,
Rosamond
,
W.
,
Sacco
,
R.
,
Sorlie
,
P.
,
Stafford
,
R.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wasserthiel-Smoller
,
S.
,
Wong
,
N.
,
Wylie-Rosett
,
J.
, and
Hong
,
Y.
, 2009, “
Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
0009-7322,
119
(
3
), pp.
e21
e181
.
6.
Chambers
,
J. B.
, 2009, “
Aortic Stenosis
,”
Eur. J. Echocardiogr.
1525-2167,
10
(
1
), pp.
i11
i19
.
7.
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Chatterjee
,
K.
,
de Leon
,
A. C.
, Jr.
,
Faxon
,
D. P.
,
Freed
,
M. D.
,
Gaasch
,
W. H.
,
Lytle
,
B. W.
,
Nishimura
,
R. A.
,
O'Gara
,
P. T.
,
O'Rourke
,
R. A.
,
Otto
,
C. M.
,
Shah
,
P. M.
, and
Shanewise
,
J. S.
, 2008, “
2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons
,”
J. Am. Coll. Cardiol.
0735-1097,
52
(
13
), pp.
e1
142
.
8.
Garcia
,
D.
,
Pibarot
,
P.
,
Dumesnil
,
J. G.
,
Sakr
,
F.
, and
Durand
,
L. G.
, 2000, “
Assessment of Aortic Valve Stenosis Severity: A New Index Based on the Energy Loss Concept
,”
Circulation
0009-7322,
101
(
7
), pp.
765
771
.
9.
Heinrich
,
R. S.
,
Fontaine
,
A. A.
,
Grimes
,
R. Y.
,
Sidhaye
,
A.
,
Yang
,
S.
,
Moore
,
K. E.
,
Levine
,
R. A.
, and
Yoganathan
,
A. P.
, 1996, “
Experimental Analysis of Fluid Mechanical Energy Losses in Aortic Valve Stenosis: Importance of Pressure Recovery
,”
Ann. Biomed. Eng.
0090-6964,
24
(
6
), pp.
685
694
.
10.
Clark
,
C.
, 1979, “
Energy Losses in Flow Through Stenosed Valves
,”
J. Biomech.
0021-9290,
12
(
10
), pp.
737
746
.
11.
Graeter
,
T. P.
,
Fries
,
R.
,
Aicher
,
D.
,
Reul
,
H.
,
Schmitz
,
C.
, and
Schafers
,
H. J.
, 2006, “
In-Vitro Comparison of Aortic Valve Hemodynamics Between Aortic Root Remodeling and Aortic Valve Reimplantation
,”
J. Heart Valve Dis.
0966-8519,
15
(
3
), pp.
329
335
.
12.
Rhodes
,
K. D.
,
Stroml
,
J. A.
,
Rahman
,
M. M.
, and
VanAuker
,
M. D.
, 2007, “
Prediction of Pressure Recovery Location in Aortic Valve Stenosis: An In-Vitro Validation Study
,”
J. Heart Valve Dis.
0966-8519,
16
(
5
), pp.
489
494
.
13.
Leo
,
H. L.
,
Simon
,
H.
,
Carberry
,
J.
,
Lee
,
S. C.
, and
Yoganathan
,
A. P.
, 2005, “
A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves
,”
Ann. Biomed. Eng.
0090-6964,
33
(
4
), pp.
429
443
.
14.
Gorlin
,
R.
, and
Gorlin
,
S. G.
, 1951, “
Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, Other Cardiac Valves, and Central Circulatory Shunts. I
,”
Am. Heart J.
0002-8703,
41
(
1
), pp.
1
29
.
15.
Yoganathan
,
A. P.
,
He
,
Z.
, and
Casey Jones
,
S.
, 2004, “
Fluid Mechanics of Heart Valves
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
331
362
.
You do not currently have access to this content.