Convection enhanced delivery is an attractive option for the treatment of several neurodegenerative diseases such as Parkinson, Alzheimer, and brain tumors. However, the occurrence of a backflow is a major problem impeding the widespread use of this technique. In this paper, we analyze experimentally the force impact of high flow microinfusion on the deformable gel matrix. To investigate these fluid structure interactions, two optical methods are reported. First, gel stresses during microinfusion were visualized through a linear polariscope. Second, the displacement field was tracked using 400 nm nanobeads as space markers. The corresponding strain and porosity fields were calculated from the experimental observations. Finally, experimental data were used to validate a computational model for fluid flow and deformation in soft porous media. Our studies demonstrate experimentally, the distribution and magnitude of stress and displacement fields near the catheter tip. The effect of fluid traction on porosity and hydraulic conductivity is analyzed. The increase in fluid content in the catheter vicinity enhances the gel hydraulic conductivity. Our computational model takes into account the changes in porosity and hydraulic conductivity. The simulations agree with experimental findings. The experiments quantified solid matrix deformation, due to fluid infusion. Maximum deformations occur in areas of relatively large fluid velocities leading to volumetric strain of the matrix, causing changes in hydraulic conductivity and porosity close to the catheter tip. The gradual expansion of this region with increased porosity leads to decreased hydraulic resistance that may also create an alternative pathway for fluid flow.

1.
Hall
,
W. A.
,
Rustamzadeh
,
E.
, and
Asher
,
A. L.
, 2003, “
Convection-Enhanced Delivery in Clinical Trials
,”
Neurosurg. Focus
,
14
(
2
), pp.
1
4
.
2.
Kunwar
,
S.
, 2003, “
Convection Enhanced Delivery of Il13-Pe38 qqr for Treatment of Recurrent Malignant Glioma: Presentation of Interim Findings From Ongoing Phase 1 Studies
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
88
, pp.
105
111
.
3.
Bobo
,
R. H.
,
Laske
,
D. W.
,
Akbasak
,
A.
,
Morrison
,
P. F.
,
Dedrick
,
R. L.
, and
Oldfield
,
E. H.
, 1994, “
Convection-Enhanced Delivery of Macromolecules in the Brain
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
91
(
6
), pp.
2076
2080
.
5.
Fleming
,
A. B.
, and
Saltzman
,
W. M.
, 2002, “
Pharmacokinetics of the Carmustine Implant
,”
Clin. Pharmacokinet
0312-5963,
41
, pp.
403
419
.
6.
Sampson
,
J. H.
,
Brady
,
M. L.
,
Petry
,
N. A.
,
Croteau
,
D.
,
Friedman
,
A. H.
,
Friedman
,
H. S.
,
Wong
,
T.
,
Bigner
,
D. D.
,
Pastan
,
I.
,
Puri
,
R. K.
, and
Pedain
,
C.
, 2007, “
Intracerebral Infusate Distribution by Convection-Enhanced Delivery in Humans With Malignant Gliomas: Descriptive Effects of Target Anatomy and Catheter Positioning
,”
Neurosurgery
0148-396X,
60
(
2
), pp.
89
99
.
7.
Raghavan
,
R.
,
Brady
,
M. L.
,
Rodriguez-Ponce
,
M. I.
,
Hartlep
,
A.
,
Pedain
,
C.
, and
Sampson
,
J. H.
, 2006, “
Convection-Enhanced Delivery of Therapeutics for Brain Disease, and Its Optimization
,”
Neurosurg. Focus
0022-3085,
20
(
4
), pp.
1
13
.
8.
Morrison
,
P. F.
,
Chen
,
M. Y.
,
Chadwick
,
R. S.
,
Lonser
,
R. R.
, and
Oldfield
,
E. H.
, 1999, “
Focal Delivery During Direct Infusion to Brain: Role of Flow Rate, Catheter Diameter, and Tissue Mechanics
,”
Am. J. Physiol. Regulatory Integrative Comp. Physiol.
0363-6119,
277
(
4
), pp.
R1218
1229
.
9.
Chen
,
Z. -J.
,
Broaddus
,
W. C.
,
Viswanathan
,
R. R.
,
Raghavan
,
R.
, and
Gillies
,
G. T.
, 2002, “
Intraparenchymal Drug Delivery Via Positive-Pressure Infusion: Experimental and Modeling Studies of Poroelasticity in Brain Phantom Gels
,”
IEEE Trans. Biomed. Eng.
0018-9294,
49
(
2
), pp.
85
96
.
10.
Chen
,
Z. -J.
,
Gillies
,
G. T.
,
Broaddus
,
W. C.
,
Prabhu
,
S. S.
,
Fillmore
,
H.
,
Mitchell
,
R. M.
,
Corwin
,
F. D.
, and
Fatouros
,
P. P.
, 2004, “
A Realistic Brain Tissue Phantom for Intraparenchymal Infusion Studies
,”
J. Neurosurg.
0022-3085,
101
(
2
), pp.
314
322
.
11.
Linninger
,
A. A.
,
Somayaji
,
M. R.
,
Zhang
,
L.
,
Hariharan
,
M. S.
, and
Penn
,
R. D.
, 2008, “
Rigorous Mathematical Modeling Techniques for Optimal Delivery of Macromolecules to the Brain
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
(
9
), pp.
2303
2313
.
12.
Lynch
,
T. M.
, and
Lintilhac
,
P. M.
, 1997, “
Mechanical Signals in Plant Development: A New Method for Single Cell Studies
,”
Dev. Biol.
0012-1606,
181
(
2
), pp.
246
256
.
13.
Dally
,
J. W.
, and
Riley
,
W. F.
, 1991,
Experimental Stress Analysis
,
McGraw-Hill
,
New York
.
14.
Gillies
,
G. T.
,
Wilhelm
,
T. D.
,
Humphrey
,
J. A. C.
,
Fillmore
,
H. L.
,
Holloway
,
K. L.
, and
Broaddus
,
W. C.
, 2002, “
A Spinal Cord Surrogate With Nanoscale Porosity for In Vitro Simulations of Restorative Neurosurgical Techniques
,”
Nanotechnology
0957-4484,
13
(
5
), pp.
587
591
.
15.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
16.
Innovative Scientific Solutions Inc., http://www.innssi.com/http://www.innssi.com/
18.
Netti
,
P. A.
,
Baxter
,
L. T.
,
Boucher
,
Y.
,
Skalak
,
R.
, and
Jain
,
R. K.
, 1997, “
Macro- and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors
,”
AIChE J.
0001-1541,
43
(
3
), pp.
818
834
.
19.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Eng. Sci.
1009-1742,
18
, pp.
1129
1148
.
20.
Schmid Scholbein
,
G. W.
,
Woo
,
S. L.-Y.
, and
Zweifach
,
B. W.
, 1986,
Frontiers in Biomechanics
,
Springer-Verlag
,
New York
.
21.
Smith
,
J. H.
, and
García
,
J. J.
, 2009, “
A Nonlinear Biphasic Model of Flow-Controlled Infusion in Brain: Fluid Transport and Tissue Deformation Analyses
,”
J. Biomech.
0021-9290,
42
(
13
), pp.
2017
2025
.
22.
Bauman
,
M. A.
,
Gillies
,
G. T.
,
Raghavan
,
R.
,
Brady
,
M. L.
, and
Pedain
,
C.
, 2004, “
Physical Characterization of Neurocatheter Performance in a Brain Phantom Gelatin With Nanoscale Porosity: Steady-State and Oscillatory Flows
,”
Nanotechnology
0957-4484,
15
(
1
), pp.
92
97
.
23.
Gu
,
W.
,
Yao
,
H.
,
Vega
,
A.
, and
Flagler
,
D.
, 2004, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
0090-6964,
32
(
12
), pp.
1710
1717
.
You do not currently have access to this content.