The alveoli are the smallest units of the lung that participate in gas exchange. Although gas transport is governed primarily by diffusion due to the small length scales associated with the acinar region (500μm), the transport and deposition of inhaled aerosol particles are influenced by convective airflow patterns. Therefore, understanding alveolar fluid flow and mixing is a necessary first step toward predicting aerosol transport and deposition in the human acinar region. In this study, flow patterns and particle transport have been measured using a simplified in-vitro alveolar model consisting of a single alveolus located on a bronchiole. The model comprises a transparent elastic 5/6 spherical cap (representing the alveolus) mounted over a circular hole on the side of a rigid circular tube (representing the bronchiole). The alveolus is capable of expanding and contracting in phase with the oscillatory flow through the tube. Realistic breathing conditions were achieved by exercising the model at physiologically relevant Reynolds and Womersley numbers. Particle image velocimetry was used to measure the resulting flow patterns in the alveolus. Data were acquired for five cases obtained as combinations of the alveolar-wall motion (nondeforming/oscillating) and the bronchiole flow (none/steady/oscillating). Detailed vector maps at discrete points within a given cycle revealed flow patterns, and transport and mixing of bronchiole fluid into the alveolar cavity. The time-dependent velocity vector fields were integrated over multiple cycles to estimate particle transport into the alveolar cavity and deposition on the alveolar wall. The key outcome of the study is that alveolar-wall motion enhances mixing between the bronchiole and the alveolar fluid. Particle transport and deposition into the alveolar cavity are maximized when the alveolar wall oscillates in tandem with the bronchiole fluid, which is the operating case in the human lung.

1.
Churg
,
A.
, 2000, “
Particle Uptake by Epithelial Cells
,”
Particle-Lung Interactions
,
Dekker
,
New York
.
2.
Edwards
,
D. A.
, 1995, “
The Macrotransport of Aerosol Particles in the Lung: Aerosol Deposition
,”
J. Aerosol Sci.
0021-8502,
26
, pp.
293
317
.
3.
Fresconi
,
F. E.
,
Wexler
,
A. S.
, and
Prasad
,
A. K.
, 2003, “
Expiration Flow in a Symmetric Bifurcation
,”
Exp. Fluids
0723-4864,
35
, pp.
493
501
.
4.
Fresconi
,
F. E.
, and
Prasad
,
A. K.
, 2008, “
Convective Dispersion During Steady Flow in the Conducting Airways of the Human Lung
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
1
), p.
011015
.
5.
Fresconi
,
F. E.
, and
Prasad
,
A. K.
, 2007, “
Secondary Velocity Fields in the Conducting Airways of the Human Lung
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
722
732
.
6.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Academic
,
New York
.
7.
Higgins
,
I. T. T.
,
Albert
,
R. E.
,
Charlson
,
R. J.
,
Darley
,
E. F.
,
Ferris
,
B. G.
, Jr.
,
Frank
,
R.
,
Whithy
,
K. T.
, and
Redmond
,
J.
, Jr.
, 1979, “
Airborne Particles
,” Subcommittees on Airborne Particles, Division of Medical Sciences, National Research Council, Technical Report No. EPA-600/1-77-053.
8.
Karl
,
A.
,
Henry
,
F. S.
, and
Tsuda
,
A.
, 2004, “
Low Reynolds Number Viscous Flow in an Alveolated Duct
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
420
429
.
9.
Federspiel
,
W. J.
, and
Fredberg
,
J. J.
, 1988, “
Axial Dispersion in Respiratory Bronchioles and Alveolar Ducts
,”
J. Appl. Physiol.
8750-7587,
64
, pp.
2614
2621
.
10.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 1994, “
Effects of Alveolated Duct Structure on Aerosol Kinetics I. Diffusional Deposition in the Absence of Gravity
,”
J. Appl. Physiol.
8750-7587,
76
, pp.
2497
2509
.
11.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 1994, “
Effects of Alveolated Duct Structure on Aerosol Kinetics II. Gravitational Sedimentation and Inertial Impaction
,”
J. Appl. Physiol.
8750-7587,
76
, pp.
2510
2516
.
12.
Tippe
,
A.
, and
Tsuda
,
A.
, 2000, “
Recirculating Flow in an Expanding Alveolar Model: Experimental Evidence of Flow-Induced Mixing of Aerosols in the Pulmonary Acinus
,”
J. Aerosol Sci.
0021-8502,
31
, pp.
979
986
.
13.
Darquenne
,
C.
, and
Paiva
,
M.
, 1996, “
Two- and Three-Dimensional Simulations of Aerosol Transport and Deposition in Alveolar Zone of Human Lung
,”
J. Appl. Physiol.
8750-7587,
80
, pp.
1401
1414
.
14.
van Ertbruggen
,
C.
,
Corieri
,
P.
,
Theunissen
,
R.
,
Riethmuller
,
M.
, and
Darquenne
,
C.
, 2008, “
Validation of CFD Predictions of Flow in a 3D Alveolated Bend With Experimental Data
,”
J. Biomech.
0021-9290,
41
, pp.
399
405
.
15.
Haber
,
S.
, and
Tsuda
,
A.
, 1998, “
The Effect of Flow Generated by a Rhythmically Expanding Pulmonary Acinus on Aerosol Dynamics
,”
J. Aerosol Sci.
0021-8502,
29
, pp.
309
322
.
16.
Haber
,
S.
,
Butler
,
J. P.
,
Brenner
,
H.
,
Emaneul
,
I.
, and
Tsuda
,
A.
, 2000, “
Shear Flow Over a Self-Similar Expanding Pulmonary Alveolus During Rhythmical Breathing
,”
J. Fluid Mech.
0022-1120,
405
, pp.
243
268
.
17.
Tsuda
,
A.
,
Rogers
,
R. A.
,
Hydon
,
P. E.
, and
Butler
,
J. P.
, 2002, “
Chaotic Mixing Deep in the Lung
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
, pp.
10173
10178
.
18.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P.
, 1995, “
Chaotic Mixing of Alveolated Duct Flow in Rhythmically Expanding Pulmonary Acinus
,”
J. Appl. Physiol.
8750-7587,
79
, pp.
1055
1063
.
19.
Henry
,
F. S.
,
Butler
,
J. P.
, and
Tsuda
,
A.
, 2002, “
Kinematically Irreversible Acinar Flow: A Departure From Classical Dispersive Aerosol Transport Theories
,”
J. Appl. Physiol.
8750-7587,
92
, pp.
835
845
.
20.
Sznitman
,
J.
,
Heimsch
,
F.
,
Heimsch
,
T.
,
Rusch
,
D.
, and
Rosgen
,
T.
, 2007, “
Three-Dimensional Convective Alveolar Flow Induced by Rhythmic Breathing Motion of the Pulmonary Acinus
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
658
665
.
21.
Kumar
,
H.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C. L.
, 2009, “
The Effects of Geometry on Airflow in the Acinar Region of the Human Lung
,”
J. Biomech.
0021-9290,
42
(
11
), pp.
1635
1642
.
22.
Sznitman
,
J.
,
Heimshch
,
T.
,
Wildhaber
,
J. H.
,
Tsuda
,
A.
, and
Rosgen
,
T.
, 2009, “
Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space-Filling Model of the Pulmonary Acinar Tree
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
031010
.
23.
Segur
,
J. B.
, 1953, “
Physical Properties of Glycerol and Its Solutions
,”
Glycerol
,
C. S.
Miner
and
N. N.
Dalton
, eds.,
Reinhold
,
New York
, pp.
238
292
.
24.
Pedley
,
T. J.
, 1977, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
229
274
.
25.
Finlay
,
W. H.
, 2001,
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
,
Academic
,
New York
.
26.
Prasad
,
A. K.
, 2000, “
Particle Image Velocimetry
,”
Curr. Sci.
0011-3891,
79
(
1
), pp.
101
110
.
27.
Kralchevsky
,
P. A.
, and
Nagayama
,
K.
, 2001,
Particles at Fluid Interfaces and Membranes
,
Elsevier Science
,
New York
.
28.
Yager
,
D.
,
Cloutier
,
T.
,
Feld
,
H.
,
Bastacky
,
K.
,
Drazen
,
J. M.
, and
Kamm
,
R. D.
, 1994, “
Airway Surface Liquid Thickness as a Function of Lung Volume in Small Airways of the Guinea Pig
,”
J. Appl. Physiol.
8750-7587,
77
, pp.
2333
2340
.
29.
Zhang
,
Z.
, and
Kleinsteuer
,
C.
, 2001, “
Effect of Particle Inlet Distributions on Deposition in a Triple Bifurcation Lung Airway Model
,”
Journal of Aerosol Medicine
,
14
, pp.
13
29
.
30.
Longest
,
P. W.
, and
Oldham
,
M. J.
, 2006, “
Mutual Enhancements of CFD Modeling and Experimental Data: A Case Study of One Micrometer Particle Deposition in a Branching Airway Model
,”
Inhalation Toxicol.
0895-8378,
18
, pp.
761
771
.
31.
Worth Longest
,
P.
, and
Vinchurkar
,
S.
, 2007, “
Validating CFD Predictions of Respiratory Aerosol Deposition: Effects of Upstream Transition and Turbulence
,”
J. Biomech.
0021-9290,
40
, pp.
305
316
.
32.
VanDyke
,
M.
, 1982,
An Album of Fluid Motion
,
Parabolic
,
Stanford, CA
.
33.
Lee
,
D. Y.
, and
Lee
,
J. W.
, 2003, “
Characteristics of Particle Transport in an Expanding or Contracting Alveolated Tube
,”
J. Aerosol Sci.
0021-8502,
34
, pp.
1193
1215
.
You do not currently have access to this content.