Patch angioplasty is the most common technique used for the performance of carotid endarterectomy. A large number of patching materials are available for use while new materials are being continuously developed. Surprisingly little is known about the mechanical properties of these materials and how these properties compare with those of the carotid artery wall. Mismatch of the mechanical properties can produce mechanical and hemodynamic effects that may compromise the long-term patency of the endarterectomized arterial segment. The aim of this paper was to systematically evaluate and compare the biaxial mechanical behavior of the most commonly used patching materials. We compared PTFE (n = 1), Dacron (n = 2), bovine pericardium (n = 10), autogenous greater saphenous vein (n = 10), and autogenous external jugular vein (n = 9) with the wall of the common carotid artery (n = 18). All patching materials were found to be significantly stiffer than the carotid wall in both the longitudinal and circumferential directions. Synthetic patches demonstrated the most mismatch in stiffness values and vein patches the least mismatch in stiffness values compared to those of the native carotid artery. All biological materials, including the carotid artery, demonstrated substantial nonlinearity, anisotropy, and variability; however, the behavior of biological and biologically-derived patches was both qualitatively and quantitatively different from the behavior of the carotid wall. The majority of carotid arteries tested were stiffer in the circumferential direction, while the opposite anisotropy was observed for all types of vein patches and bovine pericardium. The rates of increase in the nonlinear stiffness over the physiological stress range were also different for the carotid and patching materials. Several carotid wall samples exhibited reverse anisotropy compared to the average behavior of the carotid tissue. A similar characteristic was observed for two of 19 vein patches. The obtained results quantify, for the first time, significant mechanical dissimilarity of the currently available patching materials and the carotid artery. The results can be used as guidance for designing more efficient patches with mechanical properties resembling those of the carotid wall. The presented systematic comparative mechanical analysis of the existing patching materials provides valuable information for patch selection in the daily practice of carotid surgery and can be used in future clinical studies comparing the efficacy of different patches in the performance of carotid endarterectomy.

References

1.
ACCF/SCAI/SVMB/SIR/ASITN
, 2007, “
Clinical Expert Consensus Document on Carotid Stenting: A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents (ACCF/SCAI/SVMB/SIR/ASITN Clinical Expert Consensus Document Committee on Carotid Stenting
,”
Vasc. Med.
12
, pp.
35
83
.
2.
Ricotta
,
J. J.
, and
Piazza
,
M.
, 2010, “
Carotid Endarterectomy or Carotid Artery Stenting? Matching the Patient to the Intervention
,”
Perspect. Vasc. Surg. Endovasc. Ther.
,
22
(
2
), pp.
124
136
.
3.
Muto
,
A.
,
Nishibe
,
T.
,
Dardik
,
H.
, and
Dardik
,
A.
, 2009, “
Patches for Carotid Artery Endarterectomy: Current Materials and Prospects
,”
J. Vasc. Surg.
,
50
(
1
), pp.
206
213
.
4.
Awad
,
I. A.
, and
Little
J. R.
, 1989, “
Patch Angioplasty in Carotid Endarterectomy. Advantages, Concerns, and Controversies
,”
Stroke
,
20
(
3
), pp.
417
422
.
5.
AbuRahma
,
A. F.
,
Robinson
,
P. A.
,
Saiedy
,
S.
,
Kahn
,
J. H.
, and
Boland
J. P.
, 1998, “
Prospective Randomized Trial of Carotid Endarterectomy with Primary Closure and Patch Angioplasty with Saphenous Vein, Jugular Vein, and Polytetrafluoroethylene: Long-Term Follow-Up
,”
J. Vasc. Surg.
,
27
(
2
), pp.
222
234
.
6.
Letter
,
J. A. D.
,
Moll
,
F. L.
,
Welten
,
R. J.
,
Eikelboom
,
B. C.
,
Ackerstaff
,
R. G.
,
Vermeulen
F. E.
, and
Algra
,
A.
, 1994, “
Benefits of Carotid Patching: A Prospective Randomized Study with Long-Term Follow-Up
,”
Ann. Vasc. Surg.
,
8
(
1
), pp.
54
58
.
7.
Myers
,
S. I.
,
Valentine
,
R. J.
,
Chervu
,
A.
,
Bowers
,
B. L.
, and
Clagett
,
G. P.
, 1994, “
Saphenous Vein Patch Versus Primary Closure for Carotid Endarterectomy: Long-Term Assessment of a Randomized Prospective Study
,”
J. Vasc. Surg.
,
19
(
1
), pp.
15
22
.
8.
Bond
,
R.
,
Rerkasem
,
K.
,
Naylor
,
A. R.
,
Aburahma
,
A. F.
, and
Rothwell
,
P. M.
, 2004, “
Systematic Review of Randomized Controlled Trials of Patch Angioplasty versus Primary Closure and Different Types of Patch Materials during Carotid Endarterectomy
,”
J. Vasc. Surg.
,
40
(
6
), pp.
1126
1135
.
9.
Rockman
,
C. B.
,
Halm
,
E. A.
,
Wang
,
J. J.
,
Chassin
,
M. R.
,
Tuhrim
,
S.
,
Formisano
,
P.
, and
Riles
,
T. S.
, 2005, “
Primary Closure of the Carotid Artery is Associated with Poorer Outcomes during Carotid Endarterectomy
,”
J. Vasc. Surg.
,
42
(
5
), pp.
870
877
.
10.
Dobson
,
G.
,
Flewitt
,
J.
,
Tyberg
,
J. V.
,
Moore
,
R.
, and
Karamanoglu
,
M.
, 2006, “
Endografting of the Descending Thoracic Aorta Increases Ascending Aortic Input Impedance and Attenuates Pressure Transmission in Dogs
,”
Eur. J. Vasc. Endovasc. Surg.
,
32
(
2
), pp.
129
135
.
11.
Kim
,
S. Y.
,
Hinkamp
,
T. J.
,
Jacobs
,
W. R.
,
Lichtenberg
,
R. C.
,
Posniak
,
H.
, and
Pifarr
,
R.
, 1995, “
Effect of an Inelastic Aortic Synthetic Vascular Graft on Exercise Hemodynamics
,”
Ann. Thorac. Surg.
,
59
(
4
), pp.
981
989
.
12.
Stewart
,
S.
, and
Lyman
,
D.
, 1992, “
Effects of a Vascular Graft/Natural Artery Compliance Mismatch on Pulsatile Flow
,”
J. Biomech.
,
25
, pp.
297
310
.
13.
Miyawaki
,
F.
, and
How
,
T. D. A.
, 1990, “
Effect of Compliance Mismatch on Flow Disturbances in a Model of an Arterial Graft Replacement
,”
Med. Biol. Eng. Comput.
,
28
, pp.
457
464
.
14.
Ballyk
,
P. D.
,
Walsh
,
C.
,
Butany
,
J.
, and
Ojha
,
M.
, 1998, “
Compliance Mismatch May Promote Graft-Artery Intimal Hyperplasia by Altering Suture-Line Stresses
,”
J. Biomech.
,
31
(
3
), pp.
229
237
.
15.
Surovtsova
,
I.
, 2005, “
Effects of Compliance Mismatch on Blood Flow in an Artery with Endovascular Prosthesis
,”
J. Biomech.
,
38
, pp.
2078
2086
.
16.
Kamenskiy
,
A. V.
,
Pipinos
,
I. I.
,
Desyatova
,
A. S.
,
Salkovskiy
,
Y. E.
,
Kossovich
,
L. Y.
,
Kirillova
,
I. V.
,
Bockeria
,
L. A.
,
Morozov
,
K. M.
,
Polyaev
V. O.
,
Lynch
,
T. G.
, and
Dzenis
,
Y. A.
, 2009, “
Finite Element Model of the Patched Human Carotid
,”
Vasc. Endovascular Surg.
,
43
(
6
), pp.
533
541
.
17.
Scales
,
J. T.
, 1953, “
Tissue Reactions to Synthetic Materials
,”
Proc. R. Soc. Med.
,
46
(
8
), pp.
647
652
.
18.
Tremblay
,
D.
,
Zigras
,
T.
,
Cartier
,
R.
,
Leduc
,
L.
,
Butany
,
J.
,
Mongrain
,
R.
, and
Leask
,
R. L.
, 2009, “
A Comparison of Mechanical Properties of Materials used in Aortic Arch Reconstruction
,”
Ann. Thorac. Surg.
,
88
(
5
), pp.
1484
1491
.
19.
Bond
,
R.
,
Rerkasem
,
K.
,
Naylor
,
R.
, and
Rothwell
,
P. M.
, 2004, “
Patches of Different Types for Carotid Patch Angioplasty
,”
Cochrane Database Syst. Rev.
,
2
, p.
CD000071
.
20.
AbuRahma
,
A. F.
,
Stone
,
P. A.
,
Flaherty
,
S. K.
, and
AbuRahma
,
Z.
, 2007, “
Prospective Randomized Trial of ACUSEAL (Gore-Tex) versus Hemashield-Finesse Patching during Carotid Endarterectomy: Early Results
,”
J. Vasc. Surg.
,
45
(
5
), pp.
881
884
.
21.
Naylor
,
R.
,
Hayes
,
P. D.
,
Payne
,
D. A.
,
Allroggen
,
H.
,
Steel
,
S.
,
Thompson
,
M. M.
,
London
,
N. J.
, and
Bell
,
P. R.
, 2004, “
Randomized Trial of Vein versus Dacron Patching During Carotid Endarterectomy: Long-Term Results
,”
J. Vasc. Surg.
,
39
(
5
), pp.
985
993
.
22.
O’Hara
,
P. J.
,
Hertzer
,
N. R.
,
Mascha
,
E. J.
,
Krajewski
,
L. P.
,
Clair
,
D. G.
, and
Ouriel
,
K.
, 2002, “
A Prospective, Randomized Study of Saphenous Vein Patching versus Synthetic Patching during Carotid Endarterectomy
,”
J. Vasc. Surg.
,
35
(
2
), pp.
324
332
.
23.
Purinya
,
B. A.
, and
Kas’yanov
,
V. A.
, 1977, “
Changes in the Mechanical Properties of Human Coronary Arteries with Age
,”
Mech. Compos. Mater.
,
13
(
2
), pp.
251
255
.
24.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries with Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.
25.
Patel
,
D. J.
, and
Janicki
J. S.
, 1970, “
Static Elastic Properties of the Left Coronary Circumflex Artery and the Common Carotid Artery in Dogs
,”
Circ. Res.
,
27
(
2
), pp.
149
158
.
26.
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
, pp.
199
246
.
27.
Grashow
,
J. S.
, 2005, “
Evaluation of the Biaxial Mechanical Properties of the Mitral Valve Anterior Leaflet Under Physiological Loading Conditions
,” Master’s thesis, University of Pittsburgh.
28.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.
29.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2004, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.
30.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissue
,
Springer-Verlag
,
New York
.
31.
Sacks
,
M. S.
, and
Chuong
,
C. J.
, 1998, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
, pp.
892
902
.
32.
Lysle
,
H. P.
,
Roderick
,
E. J.
, and
Parnell
,
J.
, 1960, “
Mechanical Properties of Arteries in vivo
,”
Circ. Res.
,
8
, pp.
622
639
.
33.
Dobrin
,
P. B.
, and
Mrkvicka
,
R.
, 1992, “
Estimating the Elastic Modulus of Non-Atherosclerotic Elastic Arteries
,”
J. Hypertens. Suppl.
,
10
(
6
), pp.
S7
S10
.
34.
Cox
,
R. H.
, 1975, “
Anisotropic Properties of the Canine Carotid Artery in Vitro
,”
J. Biomech.
,
8
, pp.
293
300
.
35.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
, 1979, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol.
,
237
, pp.
H620
H631
.
36.
Delfino
,
A.
, 1996, “
Analysis of Stress Field in a Model of the Human Carotid Bifurcation
,” Ph.D. thesis, Ecole Polytechnique Federale DeLausanne, Lausanne.
37.
Gupta
,
B. S.
, and
Kasyanov
,
V. A.
, 1997, “
Biomechanics of Human Common Carotid Artery and Design of Novel Hybrid Textile Compliant Vascular Grafts
,”
J. Biomed. Mater. Res.
,
34
(
3
), pp.
341
349
.
38.
Sommer
,
G.
,
Regitnig
,
P.
,
Koltringer
,
L.
, and
Holzapfel
,
G. A.
, 2009, “
Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physiological and Supra-Physiological Loadings
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
3
), pp.
H898
H912
.
39.
Kasyanov
,
V.
,
Ozolanta
,
I.
,
Purinya
,
B.
,
Ozols
,
A.
, and
Kancevich
,
V.
, 2003, “
Compliance of a Biocomposite Vascular Tissue in Longitudinal and Circumferential Directions as a Basis for Creating Artificial Substitutes
,”
Mech. Compos. Mater.
39
(
4
), pp.
347
358
.
40.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
, pp.
1
48
.
41.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
G. A.
, 2006, “
Hyperelastic Modeling of Arterial Layers with Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
,
3
, pp.
15
35
.
42.
van Oijen
C. H. G. A.
,
van de Vosse
,
F. N.
, and
Baaijens
,
F. P. T.
, 2003,
Mechanics and Design of Fiber-Reinforced Vascular Prostheses
, Technische Universiteit Eindhoven.
43.
Kowligi
,
R. R.
,
Taylor
,
H. H.
, and
Wollner
,
S. A.
, 1993, “
Physical Properties and Testing Methods for PTFE Cardiovascular Patches
,”
J. Biomater. Appl.
,
7
(
4
), pp.
353
361
.
44.
Lee
,
J. M.
, and
Wilson
G. J.
, 1986, “
Anisotropic Tensile Viscoelastic Properties of Vascular Graft Materials Tested at Low Strain Rates
,”
Biomaterials
7
(
6
), pp.
423
431
.
45.
Chen
,
C.
, and
Lumsden
A. B.
, 2004, “
Decellularized Vascular Prostheses Resistant To Thrombus Occlusion And Immunologic Rejection
,” U.S. Patent No. 6689161.
46.
Hasegawa
,
M.
, and
Azuma
,
T.
, 1979, “
Mechanical Properties of Synthetic Arterial Grafts
,”
J. Biomech.
,
12
(
7
), pp.
509
517
.
47.
Kim
,
G. E.
,
Kwon
,
T. W.
,
Cho
,
Y. P.
,
Kim
,
D. K.
, and
Kim
,
H. S.
, 2001, “
Carotid Endarterectomy with Bovine Patch Angioplasty: A Preliminary Report
,”
Cardiovasc. Surg.
,
9
(
5
), pp.
458
462
.
48.
Hines
,
G. L.
,
Feuerman
,
M.
,
Cappello
,
D.
, and
Cruz
,
V.
, 2007, “
Results of Carotid Endarterectomy with Pericardial Patch Angioplasty: Rate and Predictors of Restenosis
,”
Ann. Vasc. Surg.
,
21
(
6
), pp.
767
771
.
49.
Lee
,
J. M.
,
Ku
,
M.
, and
Haberer
,
S. A.
, 1989, “
The Bovine Pericardial Xenograft: III. Effect of Uniaxial and Sequential Biaxial Stress during Fixation on the Tensile Viscoelastic Properties of Bovine Pericardium
,”
J. Biomed. Mater. Res.
,
23
(
5
), pp.
491
506
.
50.
Berguer
,
R.
, and
Kieffer
,
E.
, 1992,
Surgery of the Arteries to the Head
,
Springer-Verlag
,
New York
.
51.
Yamamoto
,
Y.
,
Piepgras
,
D. G.
,
Marsh
,
W. R.
, and
Meyer
,
F. B.
, 1996, “
Complications Resulting from Saphenous Vein Patch Graft after Carotid Endarterectomy
,”
Neurosurgery
,
39
(
4
), pp.
670
676
.
52.
Wesly
,
R. L.
,
Vaishnav
,
R. N.
,
Fuchs
,
J. C.
,
Patel
,
D. J.
, and
Greenfield
,
J. C.
, 1975, “
Static Linear and Nonlinear Elastic Properties of Normal and Arterialized Venous Tissue in Dog and Man
,”
Circ. Res.
,
37
(
4
), pp.
509
520
.
53.
Abbott
,
W. M.
,
Megerman
,
J.
,
Hasson
,
J. E.
,
L’Italien
,
G.
, and
Warnock
,
D. F.
, 1987, “
Effect of Compliance Mismatch on Vascular Graft Patency
,”
J. Vasc. Surg.
,
5
(
2
), pp.
376
382
.
54.
Weston
,
M. W.
,
Rhee
,
K.
, and
Tarbell
,
J. M.
, 1996, “
Compliance and Diameter Mismatch Affect the Wall Shear Rate Distribution near an End-To-End Anastomosis
,”
J. Biomech.
,
29
(
2
), pp.
187
198
.
55.
Costello
,
J. R.
, 2004, “
The Effect of Material Properties and Hemodynamics on Healing of Vascular Grafts in Baboons
,” Ph.D. Thesis, Georgia Institute of Technology.
56.
Zaucha
,
M. T.
,
Gauvin
,
R.
,
Auger
,
F. A.
,
Germain
,
L.
, and
Gleason
,
R. L.
, 2011, “
Biaxial Biomechanical Properties of Self-Assembly Tissue-Engineered Blood Vessels
,”
J. R. Soc., Interface
,
8
(
55
), pp.
244
256
.
57.
Konig
,
G.
,
McAllister
,
T. N.
,
Dusserre
,
N.
,
Garrido
,
S. A.
,
Iyican
,
C.
,
Marini
,
A.
,
Fiorillo
,
A.
,
Avila
,
H.
,
Wystrychowski
,
W.
,
Zagalski
,
K.
,
Maruszewski
,
M.
,
Jones
,
A. L.
,
Cierpka
,
L.
,
de la Fuente
,
L. M.
, and
L’Heureux
,
N.
, 2009, “
Mechanical Properties of Completely Autologous Human Tissue Engineered Blood Vessels Compared to Human Saphenous Vein and Mammary Artery
,”
Biomaterials
,
30
(
8
), pp.
1542
1550
.
58.
Courtney
,
T.
,
Sacks
,
M. S.
,
Stankus
,
J.
,
Guan
,
J.
, and
Wagner
,
W. R.
, 2006, “
Design and Analysis of Tissue Engineering Scaffolds that Mimic Soft Tissue Mechanical Anisotropy
,”
Biomaterials
,
27
(
19
), pp.
3631
3638
.
59.
Yang
,
J.
,
Motlagh
,
D.
,
Webb
,
A. R.
, and
Ameer
,
G. A.
, 2005, “
Novel Biphasic Elastomeric Scaffold for Small-Diameter Blood Vessel Tissue Engineering
,”
Tissue Eng.
,
11
(
11–12
), pp.
1876
1886
.
60.
Mertsching
,
H.
,
Walles
,
T.
,
Hofmann
,
M.
,
Schanz
,
J.
, and
Knapp
W. H.
, 2005, “
Engineering of a Vascularized Scaffold for Artificial Tissue and Organ Generation
,”
Biomaterials
,
26
(
33
), pp.
6610
6617
.
You do not currently have access to this content.