Due to experimental challenges, computational simulations are often sought to quantify inhaled aerosol transport in the pulmonary acinus. Commonly, these are performed using generic alveolar topologies, including spheres, toroids, and polyhedra, to mimic the complex acinar morphology. Yet, local acinar flows and ensuing particle transport are anticipated to be influenced by the specific morphological structures. We have assessed a range of acinar models under self-similar breathing conditions with respect to alveolar flow patterns, convective flow mixing, and deposition of fine particles (1.3 μm diameter). By tracking passive tracers over cumulative breathing cycles, we find that irreversible flow mixing correlates with the location and strength of the recirculating vortex inside the cavity. Such effects are strongest in proximal acinar generations where the ratio of alveolar to ductal flow rates is low and interalveolar disparities are most apparent. Our results for multi-alveolated acinar ducts highlight that fine 1 μm inhaled particles subject to alveolar flows are sensitive to the alveolar topology, underlining interalveolar disparities in particle deposition patterns. Despite the simplicity of the acinar models investigated, our findings suggest that alveolar topologies influence more significantly local flow patterns and deposition sites of fine particles for upper generations emphasizing the importance of the selected acinar model. In distal acinar generations, however, the alveolar geometry primarily needs to mimic the space-filling alveolar arrangement dictated by lung morphology.

References

1.
Darquenne
,
C.
,
2012
, “
Aerosol Deposition in Health and Diseases
,”
J. Aerosol Med. Pulm. Drug Delivery
,
25
, pp.
140
147
.10.1089/jamp.2011.0916
2.
Nel
,
A.
,
Xiao
,
T.
,
Maedler
,
L.
, and
Li
,
N.
,
2006
, “
Toxic Potential of Materials at the Nanolevel
,”
Science
,
311
, pp.
622
627
.10.1126/science.1114397
3.
Schulz
,
H.
,
Harder
,
V.
,
Ibald-Mulli
,
A.
,
Khandoga
,
A.
,
Koenig
,
W.
,
Krombach
,
F.
,
Radykewicz
,
R.
,
Stampfl
,
A.
,
Thorand
,
B.
, and
Peters
,
A.
,
2005
, “
Cardiovascular Effects of Fine and Ultrafine Particles
,”
J. Aerosol Med.
,
18
(
1
), pp.
1
22
.10.1089/jam.2005.18.1
4.
Choi
,
H. S.
,
Ashitate
,
Y.
,
Lee
,
J. H.
,
Kim
,
S. H.
,
Matsui
,
A.
,
Insin
,
N.
,
Bawendi
,
M. G.
,
Semmler-Behnke
,
M.
,
Frangioni
,
J. V.
, and
Tsuda
,
A.
,
2010
, “
Rapid Translocation of Nanoparticles From the Lung Airspaces to the Body
,”
Nat. Biotechnol.
,
28
, pp.
1300
1304
.10.1038/nbt.1696
5.
Geiser
,
M.
,
Rothen-Rutishauser
,
B.
,
Kapp
,
N.
,
Schuerch
,
S.
,
Kreylin
,
W.
,
Schulz
,
H.
,
Semmler
,
M.
,
Im Hof
,
V.
,
Heyder
,
J.
, and
Gehr
,
P.
,
2005
, “
Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells
,”
Environ. Health Perspect.
,
113
, pp.
1555
1560
.10.1289/ehp.8006
6.
Muehlfeld
,
C.
,
Rothen-Rutishauser
,
B.
,
Blank
,
F.
,
Vanhecke
,
D.
,
Ochs
,
M.
, and
Gehr
,
P.
,
2008
, “
Interactions of Nanoparticles With Pulmonary Structures and Cellular Responses
,”
Am. J. Physiol.: Lung Cell Mol. Physiol.
,
294
, pp.
L817
L829
.10.1152/ajplung.00442.2007
7.
Adar
,
S.
,
Sheppard
,
L.
,
Vedal
,
S.
,
Polak
,
J.
,
Sampson
,
P.
,
Roux
,
A. D.
,
Budoff
,
M.
,
Jacobs
,
D.
,
Barr
,
R. G.
,
Watson
,
K.
, and
Kaufman
,
J.
,
2013
, “
Fine Particulate Air Pollution and the Progression of Carotid Intima-Medial Thickness: A Prospective Cohort Study From the Multi-Ethnic Study of Atherosclerosis and Air Pollution
,”
PLoS Med.
,
10
,
e1001430
.10.1371/journal.pmed.1001430
8.
Araujo
,
J.
, and
Nel
,
A.
,
2009
, “
Particulate Matter and Atherosclerosis: Role of Particle Size, Composition and Oxidative Stress
,”
Part. Fibre Toxicol.
,
6
, p.
24
.10.1186/1743-8977-6-24
9.
Semmler-Behnke
,
M.
,
Kreyling
,
W. G.
,
Schulz
,
H.
,
Takenaka
,
S.
,
Butler
,
J. P.
,
Henry
,
F. S.
, and
Tsuda
,
A.
,
2012
, “
Nanoparticle Delivery in Infant Lungs
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
13
), pp.
5092
5097
.10.1073/pnas.1119339109
10.
Sznitman
,
J.
,
2013
, “
Respiratory Microflows in the Pulmonary Acinus
,”
J. Biomech.
,
46
, pp.
284
298
.10.1016/j.jbiomech.2012.10.028
11.
Tsuda
,
A.
,
Henry
,
F.
, and
Butler
,
J.
,
2008
, “
Gas and Aerosol Mixing in the Acinus
,”
Respir. Physiol. Neurobiol.
,
163
, pp.
139
149
.10.1016/j.resp.2008.02.010
12.
Darquenne
,
C.
,
2001
, “
A Realistic Two-Dimensional Model of Aerosol Transport and Deposition in the Alveolar Zone of the Human Lung
,”
J. Aerosol Sci.
,
32
, pp.
1161
1174
.10.1016/S0021-8502(01)00047-7
13.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
1994
, “
Effects of Alveolated Duct Structure on Aerosol Kinetics. I. Diffusional Deposition in the Absence of Gravity
,”
J. Appl. Physiol.
,
76
(
6
), pp.
2497
2509
.
14.
Tsuda
,
A.
,
Butler
,
J.
, and
Fredberg
,
J.
,
1994
, “
Effects of Alveolated Duct Structure on Aerosol Kinetics II. Gravitational Sedimentation and Inertial Impaction
,”
J. Appl. Physiol.
,
76
, pp.
2510
1516
.
15.
Tsuda
,
A.
,
Otani
,
Y.
, and
Butler
,
J.
,
1999
, “
Acinar Flow Irreversibility Caused by Perturbations in Reversible Alveolar Wall Motion
,”
J. Appl. Physiol.
,
86
, pp.
977
984
.10.1016/j.jaerosci.2009.01.002
16.
Ma
,
B.
,
Ruwet
,
V.
,
Corieri
,
P.
,
Theunissen
,
R.
,
Riethmuller
,
M.
, and
Darquenne
,
C.
,
2009
, “
CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways
,”
J. Aerosol Sci.
,
40
(
5
), pp.
403
414
.10.1016/j.jaerosci.2009.01.002
17.
Kumar
,
H.
,
Vasilescu
,
D. M.
,
Yin
,
Y.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C.-L.
,
2013
, “
Multi-Scale Imaging and Registration-Driven Model for Pulmonary Acinar Mechanics in the Mouse
,”
J. Appl. Physiol.
,
114
, pp.
971
978
.10.1152/japplphysiol.01136.2012
18.
Fishler
,
R.
,
Mulligan
,
M. K.
, and
Sznitman
,
J.
,
2013
, “
Acinus-on-a-Chip: A Microfluidic Platform for Pulmonary Acinar Flows
,”
J. Biomech.
,
46
(
16
), pp.
2817
2823
.10.1016/j.jbiomech.2013.08.020
19.
Schittny
,
J.
,
Mund
,
S.
, and
Stampanoni
,
M.
,
2008
, “
Evidence and Structural Mechanism for Late Lung Alveolarization
,”
Am. J. Physiol.: Lung Cell. Mol. Physiol.
,
294
, pp.
L246
L254
.10.1152/ajplung.00296.2007
20.
Hwang
,
J.
,
Kim
,
M.
,
Kim
,
S.
, and
Lee
,
J.
,
2013
, “
Quantifying Morphological Parameters of the Terminal Branching Units in a Mouse Lung by Phase Contrast Synchrotron Radiation Computed Tomography
,”
PLoS One
,
8
,
e63552
.10.1371/journal.pone.0063552
21.
Tsuda
,
A.
,
Filipovic
,
N.
,
Haberthür
,
D.
,
Dickie
,
R.
,
Matsui
,
Y.
,
Stampanoni
,
M.
, and
Schittny
,
J.
,
2008
, “
Finite Element 3D Reconstruction of the Pulmonary Acinus Imaged by Synchrotron X-Ray Tomography
,”
J. Appl. Physiol.
,
105
, pp.
964
976
.10.1152/japplphysiol.90546.2008
22.
Vasilescu
,
D. M.
,
Gao
,
Z.
,
Saha
,
P. K.
,
Yin
,
L.
,
Wang
,
G.
,
Haefeli-Bleuer
,
B.
,
Ochs
,
M.
,
Weibel
,
E. R.
, and
Hoffman
,
E. A.
,
2012
, “
Assessment of Morphometry of Pulmonary Acini in Mouse Lungs by Nondestructive Imaging Using Multiscale Microcomputed Tomography
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
42
), pp.
17105
17110
.10.1073/pnas.1215112109
23.
Kumar
,
H.
,
2011
, “
Study of Airflow and Particle Transport in Acinar Airways of the Human Lung
,” Ph.D. thesis, University of Iowa.
24.
Sznitman
,
J.
,
Sutter
,
R.
,
Altorfer
,
D.
,
Stampanoni
,
M.
,
Rösgen
,
T.
, and
Schittny
,
J. C.
,
2010
, “
Visualization of Respiratory Flows From 3D Reconstructed Alveolar Airspaces Using X-Ray Tomographic Microscopy
,”
J. Visualization
,
13
(
4
), pp.
337
345
.10.1007/s12650-010-0043-0
25.
Henry
,
F. S.
,
Haber
,
S.
,
Haberthür
,
D.
,
Filipovic
,
N.
,
Milasinovic
,
D.
,
Schittny
,
J. C.
, and
Tsuda
,
A.
,
2012
, “
The Simultaneous Role of an Alveolus as Flow Mixer and Flow Feeder for the Deposition of Inhaled Submicron Particles
,”
ASME J. Biomech. Eng.
,
134
, p.
121001
.10.1115/1.4007949
26.
Fung
,
Y. C.
,
1988
, “
A Model of the Lung Structure and Its Validation
,”
J. Appl. Physiol.
,
64
, pp.
2132
2141
.
27.
Linhartová
,
A.
,
Caldwell
,
W.
, and
Anderson
,
A.
,
1986
, “
A Proposed Alveolar Model for Adult Human Lungs: The Regular Dodecahedron
,”
Anat. Rec.
,
214
, pp.
266
272
.10.1002/ar.1092140305
28.
Mead
,
J.
,
Takishima
,
T.
, and
Leith
,
D.
,
1970
, “
Stress Distribution in Lungs: A Model of Pulmonary Elasticity
,”
J. Appl. Physiol.
,
28
, pp.
596
608
.
29.
Reifenrath
,
R.
,
1975
, “
The Significance of Alveolar Geometry and Surface Tension in the Respiratory Mechanics of the Lung
,”
Respir. Physiol.
,
24
, pp.
115
137
.10.1016/0034-5687(75)90107-3
30.
Ryan
,
S.
,
Dumais
,
C.
, and
Ciannella
,
A.
,
1969
, “
The Structure of the Interalveolar Septum of the Mammalian Lung
,”
Anat. Rec.
,
165
, pp.
467
483
.10.1002/ar.1091650403
31.
Staub
,
N.
, and
Storey
,
W.
,
1962
, “
Relation Between Morphological and Physiological Events in Lung Studied by Rapid Freezing
,”
J. Appl. Physiol.
,
17
, pp.
381
390
.
32.
Sznitman
,
J.
,
Heimsch
,
T.
,
Wildhaber
,
J. H.
,
Tsuda
,
A.
, and
Rösgen
,
T.
,
2009
, “
Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space-Filling Model of the Pulmonary Acinar Tree
,”
ASME J. Biomech. Eng.
,
131
, p.
031010
.10.1115/1.3049481
33.
Kumar
,
H. T. M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2009
, “
The Effects of Geometry on Airflow in the Acinar Region of the Human Lung
,”
J. Biomech.
,
42
, pp.
1635
1642
.10.1016/j.jbiomech.2009.04.046
34.
Haber
,
S.
,
Yitzhak
,
D.
, and
Tsuda
,
A.
,
2003
, “
Gravitational Deposition in a Rhythmically Expanding and Contracting Alveolus
,”
J. Appl. Physiol.
,
95
(
2
), pp.
657
671
.10.1152/japplphysiol.00770.2002
35.
Haber
,
S.
, and
Tsuda
,
A.
,
2006
, “
A Cyclic Model for Particle Motion in the Pulmonary Acinus
,”
J. Fluid Mech.
,
567
, p.
157
.10.1017/S0022112006002345
36.
Ma
,
B.
, and
Darquenne
,
C.
,
2011
, “
Aerosol Deposition Characteristics in Distal Acinar Airways Under Cyclic Breathing Conditions
,”
J. Appl. Physiol.
,
110
(
5
), pp.
1271
1282
.10.1152/japplphysiol.00735.2010
37.
Ma
,
B.
, and
Darquenne
,
C.
,
2012
, “
Aerosol Bolus Dispersion in Acinar Airways—Influence of Gravity and Airway Asymmetry
,”
J. Appl. Physiol.
,
113
, pp.
442
450
.10.1152/japplphysiol.01549.2011
38.
Sznitman
,
J.
,
Heimsch
,
F.
,
Heimsch
,
T.
,
Rusch
,
D.
, and
Rösgen
,
T.
,
2007
, “
Three-Dimensional Convective Alveolar Flow Induced by Rhythmic Breathing Motion of the Pulmonary Acinus
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
658
665
.10.1115/1.2768109
39.
van Ertbruggen
,
C.
,
Corieri
,
P.
,
Theunissen
,
R.
,
Riethmuller
,
M.
, and
Darquenne
,
C.
,
2008
, “
Validation of CFD Predictions of Flow in a 3D Alveolated Bend With Experimental Data
,”
J. Biomech.
,
41
, pp.
399
405
.10.1016/j.jbiomech.2007.08.013
40.
Tippe
,
A.
, and
Tsuda
,
A.
,
1999
, “
Recirculating Flow in an Expanding Alveolar Model: Experimental Evidence of Flow-Induced Mixing of Aerosols in the Pulmonary Acinus
,”
J. Aerosol Sci.
,
31
, pp.
979
986
.10.1016/S0021-8502(99)00572-8
41.
Haefeli-Bleuer
,
B.
, and
Weibel
,
E. R.
,
1988
. “
Morphometry of the Human Pulmonary Acinus
,”
Anat. Rec.
,
220
(
4
), pp.
401
414
.10.1002/ar.1092200410
42.
Fishler
,
R.
,
Mulligan
,
M. K.
, and
Sznitman
,
J.
,
2013
, “
Mapping Low-Reynolds-Number Microcavity Flows Using Microfluidic Screening Devices
,”
Microfluid. Nanofluid.
,
15
, pp.
1
10
.10.1007/s10404-012-1119-z
43.
Shankar
,
P.
, and
Deshpande
,
M.
,
2000
, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
93
136
.10.1146/annurev.fluid.32.1.93
44.
Shen
,
C.
, and
Floryan
,
J.
,
1985
, “
Low Reynolds Number Flow Over Cavities
,”
Phys. Fluids
,
28
, pp.
3191
3202
.10.1063/1.865366
45.
Darquenne
,
C.
, and
Paiva
,
M.
,
1996
, “
Two- and Three-Dimensional Simulations of Aerosol Transport and Deposition in Alveolar Zone of Human Lung
,”
J. Appl. Physiol.
,
80
, pp.
1401
1414
.
46.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P.
,
1995
, “
Chaotic Mixing of Alveolated Duct Flow in Rhythmically Expanding Pulmonary Acinus
,”
J. Appl. Physiol.
,
79
(
3
), pp.
1055
1063
.
47.
Henry
,
F.
,
Butler
,
J.
, and
Tsuda
,
A.
,
2002
, “
Kinematically Irreversible Acinar Flow: A Departure From Classical Dispersive Aerosol Transport Theories
,”
J. Appl. Physiol.
,
92
, pp.
835
845
.10.1152/japplphysiol.00385.2001
48.
Henry
,
F.
, and
Tsuda
,
A.
,
2010
, “
Radial Transport Along the Human Acinar Tree
,”
ASME J. Biomech. Eng.
,
132
, p.
101001
.10.1115/1.4002371
49.
Tsuda
,
A.
,
Laine-Pearson
,
F.
, and
Hydon
,
P.
,
2011
, “
Why Chaotic Mixing of Particles Is Inevitable in the Deep Lung
,”
J. Theor. Biol.
,
286
, pp.
57
66
.10.1016/j.jtbi.2011.06.038
50.
Kumar
,
H.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2011
, “
Steady Streaming: A Key Mixing Mechanism in Low-Reynolds-Number Acinar Flows
,”
Phys. Fluids
,
23
(
4
),
041902
.10.1063/1.3567066
51.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.
52.
Haber
,
S.
,
Butler
,
J. P.
,
Brenner
,
H.
,
Emanuel
,
I.
, and
Tsuda
,
A.
,
2000
, “
Shear Flow Over a Self-Similar Expanding Pulmonary Alveolus During Rhythmical Breathing
,”
J. Fluid Mech.
,
405
, pp.
243
268
.10.1017/S0022112099007375
53.
Gil
,
J.
,
Bachofen
,
H.
,
Gehr
,
P.
, and
Weibel
,
E. R.
,
1979
, “
Alveolar Volume-Surface Area Relation in Air-and Saline-Filled Lungs Fixed by Vascular Perfusion
,”
J. Appl. Physiol.
,
47
(
5
), pp.
990
1001
.
54.
Ardila
,
R.
,
Horie
,
T.
, and
Hildebrandt
,
J.
,
1974
, “
Macroscopic Isotropy of Lung Expansion
,”
Respir. Physiol.
,
20
(
2
), pp.
105
115
.10.1016/0034-5687(74)90100-5
55.
Amini
,
R.
,
Creeden
,
K.
, and
Narusawa
,
U.
,
2005
, “
A Mechanistic Model for Quasistatic Pulmonary Pressure-Volume Curves for Inflation
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
619
629
.10.1115/1.1934079
56.
Jonson
,
B.
, and
Svantesson
,
C.
,
1999
, “
Elastic Pressure–Volume Curves: What Information Do They Convey?
,”
Thorax
,
54
(
1
), pp.
82
87
.10.1136/thx.54.1.82
57.
Hickling
,
K. G.
,
1998
, “
The Pressure–Volume Curve Is Greatly Modified by Recruitment: A Mathematical Model of ARDS Lungs
,”
Am. J. Respir. Crit. Care Med.
,
158
(
1
), pp.
194
202
.10.1164/ajrccm.158.1.9708049
58.
Bastacky
,
J.
,
Lee
,
C. Y.
,
Goerke
,
J.
,
Koushafar
,
H.
,
Yager
,
D.
,
Kenaga
,
L.
,
Speed
,
T. P.
,
Chen
,
Y.
, and
Clements
,
J. A.
,
1995
, “
Alveolar Lining Layer Is Thin and Continuous: Low-Temperature Scanning Electron Microscopy of Rat Lung
,”
J. Appl. Physiol.
,
79
(
5
), pp.
1615
1628
.
59.
Ferziger
,
J.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer Verlag
, Berlin.
60.
Hinds
,
W.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley-Interscience
, New York.
61.
Clift
,
R.
,
Grace
,
J.
, and
Weber
,
M.
,
1978
,
Drops and Particles
,
Academic Press
,
New York
.
62.
Tu
,
J.
,
Inthavong
,
K.
, and
Ahmadi
,
G.
,
2013
,
Computational Fluid and Particle Dynamics in the Human Respiratory System
(Biological and Medical Physics, Biomedical Engineering),
Springer Verlag
, Heidelberg.
63.
Berg
,
H.
,
1993
,
Random Walks in Biology
,
Princeton University Press
, Princeton, NJ.
64.
Kojic
,
M.
, and
Tsuda
,
A.
,
2004
, “
A Simple Model for Gravitational Deposition of Non-Diffusing Particles in Oscillatory Laminar Pipe Flow and Its Application to Small Airways
,”
J. Aerosol Sci.
,
35
(
2
), pp.
245
261
.10.1016/j.jaerosci.2003.08.005
65.
Tsuda
,
A.
,
Henry
,
F. S.
,
Otani
,
Y.
,
Haber
,
S.
, and
Butler
,
J. P.
,
1996
, “
Aerosol Transport and Deposition in the Rhythmically Expanding Pulmonary Acinus
,”
J. Aerosol Med.
,
9
(
3
), pp.
389
408
.10.1089/jam.1996.9.389
66.
Henry
,
F.
,
Laine-Pearson
,
F.
, and
Tsuda
,
A.
,
2009
, “
Hamiltonian Chaos in a Model Alveolus
,”
ASME J. Biomech. Eng.
,
131
, p.
011006
.10.1115/1.2953559
67.
Finlay
,
W. H.
,
2001
,
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
,
Academic Press
, London.
68.
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Donohue
,
J.
,
2008
, “
Targeted Drug-Aerosol Delivery in the Human Respiratory System
,”
Annu. Rev. Biomed. Eng.
,
10
, pp.
195
220
.10.1146/annurev.bioeng.10.061807.160544
69.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2010
, “
Airflow and Particle Transport in the Human Respiratory System
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
301
334
.10.1146/annurev-fluid-121108-145453
70.
Cassee
,
F. R.
,
Muijser
,
H.
,
Duistermaat
,
E.
,
Freijer
,
J. J.
,
Geerse
,
K. B.
,
Marijnissen
,
J. C.
, and
Arts
,
J. H.
,
2002
, “
Particle Size-Dependent Total Mass Deposition in Lungs Determines Inhalation Toxicity of Cadmium Chloride Aerosols in Rats. Application of a Multiple Path Dosimetry Model
,”
Arch. Toxicol.
,
76
(
5–6
), pp.
277
286
.10.1007/s00204-002-0344-8
71.
Daigle
,
C. C.
,
Chalupa
,
D. C.
,
Gibb
,
F. R.
,
Morrow
,
P. E.
,
Oberdörster
,
G.
,
Utell
,
M. J.
, and
Frampton
,
M. W.
,
2003
, “
Ultrafine Particle Deposition in Humans During Rest and Exercise
,”
Inhalation Toxicol.
,
15
(
6
), pp.
539
552
.10.1080/08958370304468
72.
Shah
,
R.
, and
London
,
A.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
You do not currently have access to this content.