Abstract

We study the effects of surface tension and yield stress on mucus plug rupture. A three-dimensional simplified configuration is employed to simulate mucus plug rupture in a collapsed lung airway of the tenth generation. The Herschel–Bulkley model is used to take into account the non-Newtonian viscoplastic fluid properties of mucus. Results show that the maximum wall shear stress greatly changes right prior to the rupture of the mucus plug. The surface tension influences mainly the late stage of the rupture process when the plug deforms greatly and the curvature of the mucus–air interface becomes significant. High surface tension increases the wall shear stress and the time needed to rupture since it produces a resistance to the rupture, as well as strong stress and velocity gradients across the mucus–air interface. The yield stress effects are pronounced mainly at the beginning. High yield stress makes the plug take a long time to yield and slows down the whole rupture process. When the effects induced by the surface tension and yield forces are comparable, dynamical quantities strongly depend on the ratio of the two forces. The pressure difference (the only driving in the study) contributes to wall shear stress much more than yield stress and surface tension per unit length. Wall shear stress is less sensitive to the variation in yield stress than that in surface tension. In general, wall shear stress can be effectively reduced by the smaller pressure difference and surface tension.

References

1.
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2003
, “
Mechanisms of Surface-Tension-Induced Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Physiol.
,
94
(
2
), pp.
770
783
.10.1152/japplphysiol.00764.2002
2.
Kay
,
S. S.
,
Bilek
,
A. M.
,
Dee
,
K. C.
, and
Gaver
,
D. P.
,
2004
, “
Pressure Gradient, Not Exposure Duration, Determines the Extent of Epithelial Cell Damage in a Model of Pulmonary Airway Reopening
,”
J. Appl. Physiol.
,
97
(
1
), pp.
269
276
.10.1152/japplphysiol.01288.2003
3.
Bertram
,
C.
, and
Gaver
,
D. P.
,
2005
, “
Biofluid Mechanics of the Pulmonary System
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1681
1688
.10.1007/s10439-005-8758-0
4.
Huh
,
D.
,
Fujioka
,
H.
,
Tung
,
Y. C.
,
Futai
,
N.
,
Paine
,
R. R.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2007
, “
Acoustically Detectable Cellular-Level Lung Injury Induced by Fluid Mechanical Stresses in Microfluidic Airway Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
48
), pp.
18886
18891
.10.1073/pnas.0610868104
5.
Halpern
,
D.
, and
Grotberg
,
J. B.
,
1992
, “
Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes
,”
J. Fluid Mech.
,
244
, pp.
615
632
.10.1017/S0022112092003227
6.
Romanò
,
F.
,
Fujioka
,
H.
,
Muradoglu
,
M.
, and
Grotberg
,
J. B.
,
2019
, “
Liquid Plug Formation in an Airway Closure Model
,”
Phys. Rev. Fluids.
,
4
(
9
), p.
093103
.10.1103/PhysRevFluids.4.093103
7.
Fujioka
,
H.
, and
Grotberg
,
J. B.
,
2004
, “
Steady Propagation of a Liquid Plug in a Two-Dimensional Channel
,”
ASME J. Biomech. Eng.
,
126
(
5
), pp.
567
577
.10.1115/1.1798051
8.
Fujioka
,
H.
,
Takayama
,
S.
, and
Grotberg
,
J. B.
,
2008
, “
Unsteady Propagation of a Liquid Plug in a Liquid-Lined Straight Tube
,”
Phys. Fluids
,
20
(
6
), p.
062104
.10.1063/1.2938381
9.
Hassan
,
E. A.
,
Uzgoren
,
E.
,
Fujioka
,
H.
,
Grotberg
,
J. B.
, and
Shyy
,
W.
,
2011
, “
Adaptive Lagrangian–Eulerian Computation of Propagation and Rupture of a Liquid Plug in a Tube
,”
Int. J. Numer. Methods Fluids
,
67
(
11
), pp.
1373
1392
.10.1002/fld.2422
10.
Magniez
,
J. C.
,
Baudoin
,
M.
,
Liu
,
C.
, and
Zoueshtiagh
,
F.
,
2016
, “
Dynamics of Liquid Plugs in Prewetted Capillary Tubes: From Acceleration and Rupture to Deceleration and Airway Obstruction
,”
Soft Matter
,
12
(
42
), pp.
8710
8717
.10.1039/C6SM01463A
11.
Muradoglu
,
M.
,
Romanò
,
F.
,
Fujioka
,
H.
, and
Grotberg
,
J. B.
,
2019
, “
Effects of Surfactant on Propagation and Rupture of a Liquid Plug in a Tube
,”
J. Fluid Mech.
,
872
, pp.
407
437
.10.1017/jfm.2019.333
12.
Mamba
,
S. S.
,
Magniez
,
J. C.
,
Zoueshtiagh
,
F.
, and
Baudoin
,
M.
,
2018
, “
Dynamics of a Liquid Plug in a Capillary Tube Under Cyclic Forcing: Memory Effects and Airway Reopening
,”
J. Fluid Mech.
,
838
, pp.
165
191
.10.1017/jfm.2017.828
13.
Ducloue
,
L.
,
Hazel
,
A. L.
,
Thompson
,
A. B.
, and
Juel
,
A.
,
2017
, “
Reopening Modes of a Collapsed Elasto-Rigid Channel
,”
J. Fluid Mech.
,
819
, pp.
121
146
.10.1017/jfm.2017.162
14.
Ellyett
,
K. M.
,
Cragg
,
P. A.
, and
Broadbent
,
R. S.
,
2006
, “
Effect of Surfactant Deficiency and Surfactant Replacement on Airway Patency in the Piglet Lung
,”
Respir. Physiol. Neurobiol.
,
150
(
2–3
), pp.
173
181
.10.1016/j.resp.2005.04.004
15.
Carnielli
,
V. P.
,
Zimmermann
,
L. J. I.
,
Hamvas
,
A.
, and
Cogo
,
P. E.
,
2009
, “
Pulmonary Surfactant Kinetics of the Newborn Infant: Novel Insights From Studies With Stable Isotopes
,”
J. Perinatol.
,
29
(
S2
), pp.
S29
S37
.10.1038/jp.2009.32
16.
Willson
,
D. F.
, and
Notter
,
R. H.
,
2011
, “
The Future of Exogenous Surfactant Therapy
,”
Respir. Care
,
56
(
9
), pp.
1369
1386
.10.4187/respcare.01306
17.
Fujioka
,
H.
, and
Grotberg
,
J. B.
,
2005
, “
The Steady Propagation of a Surfactant-Laden Liquid Plug in a Two-Dimensional Channel
,”
Phys. Fluids
,
17
(
8
), p.
082102
.10.1063/1.1948907
18.
Zheng
,
Y.
,
Fujioka
,
H.
, and
Grotberg
,
J. B.
,
2007
, “
Effects of Gravity, Inertia, and Surfactant on Steady Plug Propagation in a Two-Dimensional Channel
,”
Phys. Fluids
,
19
(
8
), p.
082107
.10.1063/1.2762256
19.
Laborie
,
B.
,
Rouyer
,
F.
,
Angelescu
,
D. E.
, and
Lorenceau
,
E.
,
2017
, “
Yield-Stress Fluid Deposition in Circular Channels
,”
J. Fluid Mech.
,
818
, pp.
838
851
.10.1017/jfm.2017.161
20.
Zamankhan
,
P.
,
Helenbrook
,
B. T.
,
Takayama
,
S.
, and
Grotberg
,
J. B.
,
2012
, “
Steady Motion of Bingham Liquid Plugs in Two-Dimensional Channels
,”
J. Fluid Mech.
,
705
(
SI
), pp.
258
279
.10.1017/jfm.2011.438
21.
Zamankhan
,
P.
,
Takayama
,
S.
, and
Grotberg
,
J. B.
,
2018
, “
Steady Displacement of Long Gas Bubbles in Channels and Tubes Filled by a Bingham Fluid
,”
Phys. Rev. Fluids
,
3
(
1
), p.
013302
.10.1103/PhysRevFluids.3.013302
22.
Hu
,
Y.
,
Bian
,
S.
,
Grotberg
,
J.
,
Filoche
,
M.
,
White
,
J.
,
Takayama
,
S.
, and
Grotberg
,
J. B.
,
2015
, “
A Microfluidic Model to Study Fluid Dynamics of Mucus Plug Rupture in Small Lung Airways
,”
Biomicrofluidics
,
9
(
4
), p.
044119
.10.1063/1.4928766
23.
Grotberg
,
J. B.
,
2019
, “
Crackles and Wheezes: Agents of Injury?
,”
Ann. Am. Thorac. Soc.
,
16
(
8
), pp.
967
969
.10.1513/AnnalsATS.201901-022IP
24.
Lafaurie
,
B.
,
Nardone
,
C.
,
Scardovelli
,
R.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1994
, “
Modelling Merging and Fragmentation in Multiphase Flows with SURFER
,”
J. Comput. Phys.
,
113
(
1
), pp.
134
147
.10.1006/jcph.1994.1123
25.
Youngs
,
D. L.
,
1982
, “
Time Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
, and
M. J.
Baines
, eds.,
Academic Press
, Waltham, MA, pp.
273
285
.
26.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
,
1983
, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
.10.1515/revce-1983-0102
27.
ANSYS
,
2012
, “
ANSYS 14.5 Help
,” Release 14.5, Technical Report ANSYS Group, ANSYS Inc., Canonsburg, PA.
28.
Hu
,
Y.
,
Bian
,
S.
,
Filoche
,
M.
,
Grotberg
,
J. C.
,
White
,
J.
,
Takayama
,
S.
, and
Grotberg
,
J. B.
,
2014
, “
Flow and Sound Generation in Human Lungs: Models of Wheezes and Crackles
,”
Fluid-Structure-Sound Interactions and Control
(Lecture Notes in Mechanical Engineering),
Y.
Zhou
,
Y.
Liu
,
L.
Huang
, and
D. H.
Hodges
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
301
317
.
29.
Henderson
,
W. R.
,
Chen
,
L.
,
Amato
,
M.
, and
Brochard
,
L. J.
,
2017
, “
Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome
,”
Am. J. Respir. Crit. Care Med.
,
196
(
7
), pp.
822
833
.10.1164/rccm.201612-2495CI
30.
Umbrello
,
M.
,
Formenti
,
P.
,
Bolgiaghi
,
L.
, and
Chiumello
,
D.
,
2017
, “
Current Concepts of ARDS: A Narrative Review
,”
Int. J. Mol. Sci.
,
18
(
64
), p. E64.10.3390/ijms18010064
You do not currently have access to this content.