Abstract

The dynamics of the human middle ear (ME) has been studied in the past using several computational and experimental approaches in order to observe the effect on hearing of different conditions, such as conductive disease, corrective surgery, or implantation of a middle ear prosthesis. Multibody (MB) models combine the analysis of flexible structures with rigid body dynamics, involving fewer degrees-of-freedom (DOF) than finite element (FE) models, but a more detailed description than traditional 1D lumped parameter (LP) models. This study describes the reduction of a reference FE model of the human middle ear to a MB model and compares the results obtained considering different levels of model simplification. All models are compared by means of the frequency response of the stapes velocity versus sound pressure at the tympanic membrane (TM), as well as the system natural frequencies and mode shapes. It can be seen that the flexibility of the ossicles has a limited impact on the system frequency response function (FRF) and modes, and the stiffness of the tendons and ligaments only plays a role when above certain levels. On the other hand, the restriction of the stapes footplate movement to a piston-like behavior can considerably affect the vibrational modes, while constraints to the incudomalleolar joint (IMJ) and incudostapedial joint (ISJ) can have a strong impact on the system FRF.

References

1.
O'Connor
,
K. N.
,
Cai
,
H.
, and
Puria
,
S.
,
2017
, “
The Effects of Varying Tympanic-Membrane Material Properties on Human Middle-Ear Sound Transmission in a Three-Dimensional Finite-Element Model
,”
J. Acoust. Soc. Am.
,
142
(
5
), pp.
2836
2853
.10.1121/1.5008741
2.
Jones
,
H. G.
,
Greene
,
N. T.
, and
Ahroon
,
W. A.
,
2017
, “
Assessment of Middle Ear Function During the Acoustic Reflex Using Laser-Doppler Vibrometry
,” Army Aeromedical Research Lab, Fort Rucker, AL, Report No.
USAARL-2017-16
.https://www.researchgate.net/publication/320383419_Assessment_of_Middle_Ear_Function_During_the_Acoustic_Reflex_Using_Laser-Doppler_Vibrometry
3.
Wasson
,
J. D.
,
Campbell
,
L.
,
Chambers
,
S.
,
Hampson
,
A.
,
Briggs
,
R. J. S.
, and
O'Leary
,
S. J.
,
2018
, “
Effect of Cochlear Implantation on Middle Ear Function: A Three-Month Prospective Study
,”
Laryngoscope
,
128
(
5
), pp.
1207
1212
.10.1002/lary.26840
4.
Lobato
,
L.
,
Paul
,
S.
,
Cordioli
,
J.
, and
Cruz
,
O. L. M.
,
2019
, “
How Stapes Ankylosis and Fracture Affect Middle Ear Dynamics: A Numerical Study
,”
ASME J. Biomech. Eng.
,
141
(
11
), p. 111011.10.1115/1.4043875
5.
Eiber
,
A.
,
1999
, “
Mechanical Modeling and Dynamical Behavior of the Human Middle Ear
,”
Audiol. Neurotol.
, 4(3–4), pp.
170
177
.10.1159/000013837
6.
Hudde
,
H.
, and
Weistenhöfer
,
C.
,
2006
, “
Key Features of the Human Middle Ear
,”
ORL
,
68
(
6
), pp.
324
328
.10.1159/000095274
7.
Counter
,
P.
,
2008
, “
Implantable Hearing Aids
,”
Proc. Inst. Mech. Eng., Part H
,
222
(
6
), pp.
837
852
.10.1243/09544119JEIM365
8.
Carlson
,
M. L.
,
Pelosi
,
S.
, and
Haynes
,
D. S.
,
2014
, “
Historical Development of Active Middle Ear Implants
,”
Otolaryngol. Clin. North Am.
,
47
(
6
), pp.
893
914
.10.1016/j.otc.2014.08.004
9.
Calero
,
D.
,
Paul
,
S.
,
Gesing
,
A.
,
Alves
,
F.
, and
Cordioli
,
J. A.
,
2018
, “
A Technical Review and Evaluation of Implantable Sensors for Hearing Devices
,”
Biomed. Eng. OnLine
,
17
(
1
), p.
23
.10.1186/s12938-018-0454-z
10.
Voss
,
S. E.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
, and
Peake
,
W. T.
,
2000
, “
Acoustic Responses of the Human Middle Ear
,”
Hear. Res.
,
150
(
1–2
), pp.
43
69
.10.1016/S0378-5955(00)00177-5
11.
Aibara
,
R.
,
Welsh
,
J. T.
,
Puria
,
S.
, and
Goode
,
R. L.
,
2001
, “
Human Middle-Ear Sound Transfer Function and Cochlear Input Impedance
,”
Hear. Res.
,
152
(
1–2
), pp.
100
109
.10.1016/S0378-5955(00)00240-9
12.
Rosowski
,
J.
,
Chien
,
W.
,
Ravicz
,
M.
, and
Merchant
,
S.
,
2007
, “
Testing a Method for Quantifying the Output of Implantable Middle Ear Hearing Devices
,”
Audiol. Neuro-Otol.
,
12
(
4
), pp.
265
276
.10.1159/000101474
13.
Hato
,
N.
,
Stenfelt
,
S.
, and
Goode
,
R. L.
,
2003
, “
Three-Dimensional Stapes Footplate Motion in Human Temporal Bones
,”
Audiol. Neurotol.
,
8
(
3
), pp.
140
152
.10.1159/000069475
14.
Ferrazzini
,
M.
,
2003
, “
Virtual Middle Ear: A Dynamic Mathematical Model Based on [the] Finite Element Method
,”
Ph.D. thesis
, ETH, Zurich, Switzerland. https://www.researchgate.net/publication/35641471_Virtual_middle_ear_a_dynamic_mathematical_model_based_on_finite_element_method
15.
Hüttenbrink
,
K.-B.
,
2001
, “
Middle Ear Mechanics and Their Interface With Respect to Implantable Electronic Otologic Devices
,”
Otolaryngol. Clin. North Am.
,
34
(
2
), pp.
315
335
.10.1016/S0030-6665(05)70334-0
16.
Decraemer
,
W. F.
, and
Khanna
,
S. M.
,
2004
, “
Measurement, Visualization and Quantitative Analysis of Complete Three-Dimensional Kinematical Data Sets of Human and Cat Middle Ear
,”
Middle Ear Mechanics in Research and Otology
,
World Scientific
,
Singapore
, pp.
3
10
.10.1142/9789812703019_0001
17.
Sim
,
J. H.
,
Chatzimichalis
,
M.
,
Lauxmann
,
M.
,
Röösli
,
C.
,
Eiber
,
A.
, and
Huber
,
A. M.
,
2010
, “
Complex Stapes Motions in Human Ears
,”
J. Assoc. Res. Otolaryngol.
,
11
(
3
), pp.
329
341
.10.1007/s10162-010-0207-6
18.
Eiber
,
A.
,
Huber
,
A. M.
,
Lauxmann
,
M.
,
Chatzimichalis
,
M.
,
Sequeira
,
D.
, and
Sim
,
J. H.
,
2012
, “
Contribution of Complex Stapes Motion to Cochlea Activation
,”
Hear. Res.
,
284
(
1–2
), pp.
82
92
.10.1016/j.heares.2011.11.008
19.
Puria
,
S.
,
Fay
,
R. R.
, and
Popper
,
A.
,
2013
,
The Middle Ear: Science, Otosurgery, and Technology
, Vol.
46
,
Springer Science & Business Media
,
Stanford, CA
.
20.
De Paolis
,
A.
,
Bikson
,
M.
,
Nelson
,
J. T.
,
de Ru
,
J. A.
,
Packer
,
M.
, and
Cardoso
,
L.
,
2017
, “
Analytical and Numerical Modeling of the Hearing System: Advances Towards the Assessment of Hearing Damage
,”
Hear. Res.
,
349
, pp.
111
128
.10.1016/j.heares.2017.01.015
21.
Ravicz
,
M. E.
,
Peake
,
W. T.
,
Nakajima
,
H. H.
,
Merchant
,
S. N.
, and
Rosowski
,
J. J.
,
2004
, “
Modeling Flexibility in the Human Ossicular Chain: Comparison to Ossicular Fixation Data
,”
Middle Ear Mechanics in Research and Otology
,
World Scientific
,
Singapore
, pp.
91
98
.10.1142/9789812703019_0013
22.
Feng
,
B.
, and
Gan
,
R. Z.
,
2004
, “
Lumped Parametric Model of the Human Ear for Sound Transmission
,”
Biomech. Model. Mechanobiol.
,
3
(
1
), pp.
33
47
.10.1007/s10237-004-0044-9
23.
O'Connor
,
K. N.
, and
Puria
,
S.
,
2008
, “
Middle-Ear Circuit Model Parameters Based on a Population of Human Ears
,”
J. Acoust. Soc. Am.
,
123
(
1
), pp.
197
211
.10.1121/1.2817358
24.
Zhao
,
F.
,
Koike
,
T.
,
Wang
,
J.
,
Sienz
,
H.
, and
Meredith
,
R.
,
2009
, “
Finite Element Analysis of the Middle Ear Transfer Functions and Related Pathologies
,”
Med. Eng. Phys.
,
31
(
8
), pp.
907
916
.10.1016/j.medengphy.2009.06.009
25.
Chen
,
H.
,
Okumura
,
T.
,
Emura
,
S.
, and
Shoumura
,
S.
,
2008
, “
Scanning Electron Microscopic Study of the Human Auditory Ossicles
,”
Ann. Anatomy
, 190(1), pp.
53
58
.
26.
Chen
,
S.-I.
,
Lee
,
M.-H.
,
Yao
,
C.-M.
,
Chen
,
P.-R.
,
Chou
,
Y.-F.
,
Liu
,
T.-C.
,
Song
,
Y.-L.
, and
Lee
,
C.-F.
,
2013
, “
Modeling Sound Transmission of Human Middle Ear and Its Clinical Applications Using Finite Element Analysis
,”
Kaohsiung J. Med. Sci.
,
29
(
3
), pp.
133
139
.10.1016/j.kjms.2012.08.023
27.
De Greef
,
D.
,
Aernouts
,
J.
,
Aerts
,
J.
,
Cheng
,
J. T.
,
Horwitz
,
R.
,
Rosowski
,
J. J.
, and
Dirckx
,
J. J.
,
2014
, “
Viscoelastic Properties of the Human Tympanic Membrane Studied With Stroboscopic Holography and Finite Element Modeling
,”
Hear. Res.
,
312
, pp.
69
80
.10.1016/j.heares.2014.03.002
28.
Koike
,
T.
,
Wada
,
H.
, and
Kobayashi
,
T.
,
2002
, “
Modeling of the Human Middle Ear Using the Finite-Element Method
,”
J. Acoust. Soc. Am.
,
111
(
3
), pp.
1306
1317
.10.1121/1.1451073
29.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
,
2004
, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
,
32
(
6
), pp.
847
859
.10.1023/B:ABME.0000030260.22737.53
30.
Homma
,
K.
,
Du
,
Y.
,
Shimizu
,
Y.
, and
Puria
,
S.
,
2009
, “
Ossicular Resonance Modes of the Human Middle Ear for Bone and Air Conduction
,”
J. Acoust. Soc. Am.
,
125
(
2
), pp.
968
979
.10.1121/1.3056564
31.
Yao
,
W.
,
Ma
,
J.
, and
Huang
,
X.
,
2013
, “
Numerical Simulation of the Human Ear and the Dynamic Analysis of the Middle Ear Sound Transmission
,”
J. Instrum.
,
8
(
6
), p.
C06009
.10.1088/1748-0221/8/06/C06009
32.
Zhang
,
X.
,
Guan
,
X.
,
Nakmali
,
D.
,
Palan
,
V.
,
Pineda
,
M.
, and
Gan
,
R. Z.
,
2014
, “
Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid
,”
J. Assoc. Res. Otolaryngol.
,
15
(
6
), pp.
867
881
.10.1007/s10162-014-0482-8
33.
Lobato
,
L.
,
Paul
,
S.
, and
Cordioli
,
J.
,
2018
, “
On the Material Modeling and Boundary Conditions in Finite Element Models of the Human Tympanic Membrane Under Static and Dynamic Loads
,”
Association for Research in Otolaryngology MidWinter Meeting
, San Diego, CA, Feb. 10–14.https://www.researchgate.net/publication/323177580_On_Material_Models_and_Boundary_Conditions_in_Finite_Element_Modeling_of_the_Human_Tympanic_Membrane
34.
De Greef
,
D.
,
Buytaert
,
J. A.
,
Aerts
,
J. R.
,
Van Hoorebeke
,
L.
,
Dierick
,
M.
, and
Dirckx
,
J.
,
2015
, “
Details of Human Middle Ear Morphology Based on Micro-CT Imaging of Phosphotungstic Acid Stained Samples
,”
J. Morphol.
,
276
(
9
), pp.
1025
1046
.10.1002/jmor.20392
35.
Lobato
,
L.
,
Paul
,
S.
, and
Cordioli
,
J.
,
2017
, “
Influence of Different Boundary Conditions at the Tympanic Annulus on Finite Element Models of the Human Middle Ear
,”
AIP Conf. Proc.
, 1965(1), p. 110006.10.1063/1.5038506
36.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge, UK
.
37.
Böhnke
,
F.
,
Bretan
,
T.
,
Lehner
,
S.
, and
Strenger
,
T.
,
2013
, “
Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry With the Floating Mass Transducer
,”
Materials
,
6
(
10
), pp.
4675
4688
.10.3390/ma6104675
38.
Volandri
,
G.
,
Di Puccio
,
F.
,
Forte
,
P.
, and
Manetti
,
S.
,
2012
, “
Model-Oriented Review and Multi-Body Simulation of the Ossicular Chain of the Human Middle Ear
,”
Med. Eng. Phys.
,
34
(
9
), pp.
1339
1355
.10.1016/j.medengphy.2012.02.011
39.
Hudde
,
H.
, and
Weistenhöfer
,
C.
,
1997
, “
A Three-Dimensional Circuit Model of the Middle Ear
,”
Acta Acust. Acust.
,
83
(
3
), pp.
535
549
.https://www.ingentaconnect.com/content/dav/aaua/1997/00000083/00000003/art00019
40.
Ihrle
,
S.
,
Lauxmann
,
M.
,
Eiber
,
A.
, and
Eberhard
,
P.
,
2013
, “
Nonlinear Modelling of the Middle Ear as an Elastic Multibody System—Applying Model Order Reduction to Acousto-Structural Coupled Systems
,”
J. Comput. Appl. Math.
,
246
, pp.
18
26
.10.1016/j.cam.2012.07.010
41.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
42.
Comsol
,
I.
,
2016
, “
Comsol Multiphysics
,” Burlington, MA.
43.
Pires
,
F. S.
,
Arellano
,
D. C.
,
Paul
,
S.
, and
Cordioli
,
J. A.
,
2015
, “
On Material Properties and Damping Models for the Dynamic Modeling of the Human Middle Ear by Means of the Finite Element Method
,”
J. Acoust. Soc. Am.
,
138
(
3
), pp.
1830
1831
.10.1121/1.4933817
44.
Cheng
,
T.
,
2007
, “
Mechanical Properties of Human Middle Ear Tissues
,”
Ph.D. thesis
,
University of Oklahoma
,
Norman, OK
.https://hdl.handle.net/11244/1163
45.
Cheng
,
T.
, and
Gan
,
R. Z.
,
2007
, “
Mechanical Properties of Stapedial Tendon in Human Middle Ear
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
913
918
.10.1115/1.2800837
46.
Cheng
,
T.
, and
Gan
,
R. Z.
,
2008
, “
Experimental Measurement and Modeling Analysis on Mechanical Properties of Tensor Tympani Tendon
,”
Med. Eng. Phys.
,
30
(
3
), pp.
358
366
.10.1016/j.medengphy.2007.04.005
47.
Cheng
,
T.
, and
Gan
,
R. Z.
,
2008
, “
Mechanical Properties of Anterior Malleolar Ligament From Experimental Measurement and Material Modeling Analysis
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
387
394
.10.1007/s10237-007-0094-x
48.
Lauxmann
,
M.
,
Eiber
,
A.
,
Haag
,
F.
, and
Ihrle
,
S.
,
2014
, “
Nonlinear Stiffness Characteristics of the Annular Ligament
,”
J. Acoust. Soc. Am.
,
136
(
4
), pp.
1756
1767
.10.1121/1.4895696
49.
Rusinek
,
R.
,
Warminski
,
J.
,
Weremczuk
,
A.
, and
Szymanski
,
M.
,
2018
, “
Analytical Solutions of a Nonlinear Two Degrees of Freedom Model of a Human Middle Ear With Sma Prosthesis
,”
Int. J. Non-Linear Mech.
,
98
, pp.
163
172
.10.1016/j.ijnonlinmec.2017.10.014
50.
Nakajima
,
H. H.
,
Dong
,
W.
,
Olson
,
E. S.
,
Merchant
,
S. N.
,
Ravicz
,
M. E.
, and
Rosowski
,
J. J.
,
2009
, “
Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones
,”
J. Assoc. Res. Otolaryngol.
,
10
(
1
), pp.
23
36
.10.1007/s10162-008-0150-y
51.
Cheng
,
J. T.
,
Hamade
,
M.
,
Merchant
,
S. N.
,
Rosowski
,
J. J.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2013
, “
Wave Motion on the Surface of the Human Tympanic Membrane: Holographic Measurement and Modeling Analysis
,”
J. Acoust. Soc. Am.
,
133
(
2
), pp.
918
937
.10.1121/1.4773263
52.
Ewins
,
D.
,
2000
, “
Model Validation: Correlation for Updating
,”
Sadhana
,
25
(
3
), pp.
221
234
.10.1007/BF02703541
53.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion–Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
23
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.455.7870&rep=rep1&type=pdf
54.
McGowan
,
P. E.
,
Angelucci
,
A. F.
, and
Javeed
,
M.
,
1992
, “
Dynamic Test/Analysis Correlation Using Reduced Analytical Models
,”
33rd Structures, Structural Dynamics and Materials Conference
, Dallas, TX, Apr. 13–15, p.
2335
.10.2514/6.1992-2335
55.
Koutsovasilis
,
P.
, and
Beitelschmidt
,
M.
,
2008
, “
Comparison of Model Reduction Techniques for Large Mechanical Systems
,”
Multibody Syst. Dyn.
,
20
(
2
), pp.
111
128
.10.1007/s11044-008-9116-4
56.
Gan
,
R. Z.
,
Sun
,
Q.
,
Dyer
,
R. K.
, Jr.
,
Chang
,
K.-H.
, and
Dormer
,
K. J.
,
2002
, “
Three-Dimensional Modeling of Middle Ear Biomechanics and Its Applications
,”
Otol. Neurotol.
,
23
(
3
), pp.
271
280
.10.1097/00129492-200205000-00008
57.
Gan
,
R. Z.
,
Cheng
,
T.
,
Nakmali
,
D.
, and
Wood
,
M. W.
,
2006
, “
Effects of Middle Ear Suspensory Ligaments on Acoustic-Mechanical Transmission in Human Ear
,”
Proceedings of the Fourth International Symposium on Middle Ear Mechanics in Research and Otology
, Zurich, Switzerland, July 27–30, pp.
212
221
.10.1142/9789812708694_0029
58.
Dai
,
C.
,
Cheng
,
T.
,
Wood
,
M. W.
, and
Gan
,
R. Z.
,
2007
, “
Fixation and Detachment of Superior and Anterior Malleolar Ligaments in Human Middle Ear: Experiment and Modeling
,”
Hear. Res.
,
230
(
1–2
), pp.
24
33
.10.1016/j.heares.2007.03.006
59.
Nakajima
,
H. H.
,
Ravicz
,
M. E.
,
Merchant
,
S. N.
,
Peake
,
W. T.
, and
Rosowski
,
J. J.
,
2005
, “
Experimental Ossicular Fixations and the Middle Ear's Response to Sound: Evidence for a Flexible Ossicular Chain
,”
Hear. Res.
,
204
(
1–2
), pp.
60
77
.10.1016/j.heares.2005.01.002
60.
Borg
,
E.
,
Counter
,
S.
, and
Rosler
,
G.
,
1984
, “
Theories of Middle-Ear Muscle Function
,” The Acoustic Reflex: Basic Principles Clinical Applications, Elsevier, East Orange, NJ, pp.
63
99
.
61.
Møller
,
A. R.
, ed.,
2006
,
Cochlear and Brainstem Implants
(Advances in oto-rhino-laryngology),
64
,
Karger
,
Basel, Switzerland
.
62.
Willi
,
U. B.
,
Ferrazzini
,
M. A.
, and
Huber
,
A. M.
,
2002
, “
The Incudo-Malleolar Joint and Sound Transmission Losses
,”
Hear. Res.
,
174
(
1–2
), pp.
32
44
.10.1016/S0378-5955(02)00632-9
63.
Offergeld
,
C.
,
Lazurashvili
,
N.
,
Bornitz
,
M.
,
Beleites
,
T.
, and
Zahnert
,
T.
,
2007
, “
Experimental Investigations on the Functional Effect of Ossicular Joint Fixation
,”
Middle Ear Mechanics in Research and Otology
, pp.
102
108
.10.1142/9789812708694_0013
64.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory and Practice
, Vol.
15
,
Research Studies Press
,
Letchworth, UK
.
You do not currently have access to this content.