Abstract

The paper aims at evaluation of mechanical tests of soft tissues and creation of their representative stress–strain responses and respective constitutive models. Interpretation of sets of experimental results depends highly on the approach to the data analysis. Their common representation through mean and standard deviation may be misleading and give nonrealistic results. In the paper, raw data of seven studies consisting of 11 experimental data sets (concerning carotid wall and atheroma tissues) are re-analyzed to show the importance of their rigorous analysis. The sets of individual uniaxial stress–stretch curves are evaluated using three different protocols: stress-based, stretch-based, and constant-based, and the population-representative response is created by their mean or median values. Except for nearly linear responses, there are substantial differences between the resulting curves, being mostly the highest for constant-based evaluation. But also the stretch-based evaluation may change the character of the response significantly. Finally, medians of the stress-based responses are recommended as the most rigorous approach for arterial and other soft tissues with significant strain stiffening.

References

1.
Xenos
,
M.
,
Labropoulos
,
N.
,
Rambhia
,
S.
,
Alemu
,
Y.
,
Einav
,
S.
,
Tassiopoulos
,
A.
,
Sakalihasan
,
N.
, and
Bluestein
,
D.
,
2015
, “
Progression of Abdominal Aortic Aneurysm Towards Rupture: Refining Clinical Risk Assessment Using a Fully Coupled Fluid–Structure Interaction Method
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
139
153
.10.1007/s10439-014-1224-0
2.
Cilla
,
M.
,
Borrás
,
I.
,
Peña
,
E.
,
Martínez
,
M. A.
, and
Malvè
,
M.
,
2015
, “
A Parametric Model for Analysing Atherosclerotic Arteries: On the FSI Coupling
,”
Int. Commun. Heat Mass Transfer
,
67
, pp.
29
38
.10.1016/j.icheatmasstransfer.2015.06.017
3.
Tang
,
D.
,
Yang
,
C.
,
Huang
,
S.
,
Mani
,
V.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Robson
,
P.
,
Teng
,
Z.
,
Dweck
,
M.
, and
Fayad
,
Z. A.
,
2017
, “
Cap Inflammation Leads to Higher Plaque Cap Strain and Lower Cap Stress: An MRI-PET/CT-Based FSI Modeling Approach
,”
J. Biomech.
,
50
, pp.
121
129
.10.1016/j.jbiomech.2016.11.011
4.
Teng
,
Z.
,
Yuan
,
J.
,
Feng
,
J.
,
Zhang
,
Y.
,
Brown
,
A. J.
,
Wang
,
S.
,
Lu
,
Q.
, and
Gillard
,
J. H.
,
2015
, “
The Influence of Constitutive Law Choice Used to Characterise Atherosclerotic Tissue Material Properties on Computing Stress Values in Human Carotid Plaques
,”
J. Biomech.
,
48
(
14
), pp.
3912
3921
.10.1016/j.jbiomech.2015.09.023
5.
Huang
,
X.
,
Yang
,
C.
,
Zheng
,
J.
,
Bach
,
R.
,
Muccigrosso
,
D.
,
Woodard
,
P. K.
, and
Tang
,
D.
,
2016
, “
3D MRI-Based Multicomponent Thin Layer Structure Only Plaque Models for Atherosclerotic Plaques
,”
J. Biomech.
,
49
(
13
), pp.
2726
2733
.10.1016/j.jbiomech.2016.06.002
6.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bauer
,
C. A. J.
,
2002
, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
753
767
.10.1114/1.1492812
7.
Auricchio
,
F.
,
Conti
,
M.
,
De Beule
,
M.
,
De Santis
,
G.
, and
Verhegghe
,
B.
,
2011
, “
Carotid Artery Stenting Simulation: From Patient-Specific Images to Finite Element Analysis
,”
Med. Eng. Phys.
,
33
(
3
), pp.
281
289
.10.1016/j.medengphy.2010.10.011
8.
Mortier
,
P.
,
Holzapfel
,
G. A.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Taeymans
,
Y.
,
Segers
,
P.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
,
2010
, “
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
88
99
.10.1007/s10439-009-9836-5
9.
Nieuwstadt
,
H. A.
,
Kassar
,
Z. A. M.
,
Van Der Lugt
,
A.
,
Breeuwer
,
M.
,
Van Der Steen
,
A. F. W.
,
Wentzel
,
J. J.
, and
Gijsen
,
F. J. H.
,
2015
, “
A Computer-Simulation Study on the Effects of MRI Voxel Dimensions on Carotid Plaque Lipid-Core and Fibrous Cap Segmentation and Stress Modeling
,”
PLoS One
,
10
(
4
), p.
e0123031
.10.1371/journal.pone.0123031
10.
Koskinas
,
K. C.
,
Chatzizisis
,
Y. S.
,
Antoniadis
,
A. P.
, and
Giannoglou
,
G. D.
,
2012
, “
Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis: Pathophysiologic Mechanisms and Implications for Clinical Translation
,”
J. Am. Coll. Cardiol.
,
59
(
15
), pp.
1337
1349
.10.1016/j.jacc.2011.10.903
11.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fibre Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1275
1286
.10.1098/rsif.2011.0727
12.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
13.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2018
, “
Biomechanical Relevance of the Microstructure in Artery Walls With a Focus on Passive and Active Components
,”
Am. J. Physiol. Hear. Circ. Physiol.
,
315
(
3
), pp.
H540
H549
.10.1152/ajpheart.00117.2018
14.
Teng
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Feng
,
J.
,
Yuan
,
J.
,
Lu
,
Q.
,
Sutcliffe
,
M. P. F.
,
Brown
,
A. J.
,
Jing
,
Z.
, and
Gillard
,
J. H.
,
2014
, “
Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study
,”
Acta Biomater.
,
10
(
12
), pp.
5055
5063
.10.1016/j.actbio.2014.09.001
15.
Akyildiz
,
A. C.
,
Speelman
,
L.
, and
Gijsen
,
F. J. H.
,
2014
, “
Mechanical Properties of Human Atherosclerotic Intima Tissue
,”
J. Biomech.
,
47
(
4
), pp.
773
783
.10.1016/j.jbiomech.2014.01.019
16.
Maher
,
E.
,
Creane
,
A.
,
Sultan
,
S.
,
Hynes
,
N.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2009
, “
Tensile and Compressive Properties of Fresh Human Carotid Atherosclerotic Plaques
,”
J. Biomech.
,
42
(
16
), pp.
2760
2767
.10.1016/j.jbiomech.2009.07.032
17.
Lawlor
,
M. G.
,
O'Donnell
,
M. R.
,
O'Connell
,
B. M.
, and
Walsh
,
M. T.
,
2011
, “
Experimental Determination of Circumferential Properties of Fresh Carotid Artery Plaques
,”
J. Biomech.
,
44
(
9
), pp.
1709
1715
.10.1016/j.jbiomech.2011.03.033
18.
Chai
,
C. K.
,
Akyildiz
,
A. C.
,
Speelman
,
L.
,
Gijsen
,
F. J. H.
,
Oomens
,
C. W. J.
,
van Sambeek
,
M. R. H. M.
,
van der Lugt
,
A.
, and
Baaijens
,
F. P. T.
,
2015
, “
Local Anisotropic Mechanical Properties of Human Carotid Atherosclerotic Plaques - Characterisation by Micro-Indentation and Inverse Finite Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
43
(
10
), pp.
59
68
.10.1016/j.jmbbm.2014.12.004
19.
Hoffman
,
A. H.
,
Teng
,
Z.
,
Zheng
,
J.
,
Wu
,
Z.
,
Woodard
,
P. K.
,
Billiar
,
K. L.
,
Wang
,
L.
, and
Tang
,
D.
,
2017
, “
Stiffness Properties of Adventitia, Media, and Full Thickness Human Atherosclerotic Carotid Arteries in the Axial and Circumferential Directions
,”
ASME J. Biomech. Eng.
,
139
(
12
), p.
124501
.10.1115/1.4037794
20.
Walsh
,
M. T.
,
Cunnane
,
E. M.
,
Mulvihill
,
J. J.
,
Akyildiz
,
A. C.
,
Gijsen
,
F. J. H.
, and
Holzapfel
,
G. A.
,
2014
, “
Uniaxial Tensile Testing Approaches for Characterisation of Atherosclerotic Plaques
,”
J. Biomech.
,
47
(
4
), pp.
793
804
.10.1016/j.jbiomech.2014.01.017
21.
Macrae
,
R. A.
,
Miller
,
K.
, and
Doyle
,
B. J.
,
2016
, “
Methods in Mechanical Testing of Arterial Tissue: A Review
,”
Strain
,
52
(
5
), pp.
380
399
.10.1111/str.12183
22.
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2012
, “
3D Constitutive Modeling of the Biaxial Mechanical Response of Intact and Layer-Dissected Human Carotid Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
5
(
1
), pp.
116
128
.10.1016/j.jmbbm.2011.08.013
23.
Schulze-Bauer
,
C. A. J.
,
MöRth
,
C.
, and
Holzapfel
,
G. A.
,
2003
, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
395
406
.10.1115/1.1574331
24.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
J. Physiol. Hear. Circ. Physiol.
,
103
(
4
), pp.
806
808
.
25.
Polzer
,
S.
,
Gasser
,
T. C.
,
Novak
,
K.
,
Man
,
V.
,
Tichy
,
M.
,
Skacel
,
P.
, and
Bursa
,
J.
,
2015
, “
Structure-Based Constitutive Model Can Accurately Predict Planar Biaxial Properties of Aortic Wall Tissue
,”
Acta Biomater.
,
14
, pp.
133
145
.10.1016/j.actbio.2014.11.043
26.
Mulvihill
,
J. J.
,
Cunnane
,
E. M.
,
Mchugh
,
S. M.
,
Kavanagh
,
E. G.
,
Walsh
,
S. R.
, and
Walsh
,
M. T.
,
2013
, “
Mechanical, Biological and Structural Characterization of In Vitro Ruptured Human Carotid Plaque Tissue
,”
Acta Biomater.
,
9
(
11
), pp.
9027
9035
.10.1016/j.actbio.2013.07.012
27.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Kazmi
,
S. A. J.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
N. Y.
,
Herber
,
K.
,
Woodford
,
T.
,
Bowen
,
R. E.
,
Lomneth
,
C. S.
, and
MacTaggart
,
J. N.
,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal and Common Iliac Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1341
1359
.10.1007/s10237-014-0576-6
28.
Barrett
,
H. E.
,
Cunnane
,
E. M.
,
Kavanagh
,
E. G.
, and
Walsh
,
M. T.
,
2016
, “
On the Effect of Calcification Volume and Configuration on the Mechanical Behaviour of Carotid Plaque Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
56
, pp.
45
56
.10.1016/j.jmbbm.2015.11.001
29.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.10.5254/1.3538343
30.
Polzer
,
S.
,
Polišenská
,
A.
,
Novák
,
K.
, and
Burša
,
J.
,
2019
, “
Moderate Thickness of Lipid Core in Shoulder Region of Atherosclerotic Plaque Determines Vulnerable Plaque—A Parametric Study
,”
Med. Eng. Phys.
,
69
, pp.
140
146
.10.1016/j.medengphy.2019.04.011
31.
O'Reilly
,
B. L.
,
Hynes
,
N.
,
Sultan
,
S.
,
McHugh
,
P. E.
, and
McGarry
,
J. P.
,
2020
, “
An Experimental and Computational Investigation of the Material Behaviour of Discrete Homogenous Iliofemoral and Carotid Atherosclerotic Plaque Constituents
,”
J. Biomech.
,
106
, p. 109801.
32.
Bilgili
,
E.
,
2004
, “
Restricting the Hyperelastic Models for Elastomers Based on Some Thermodynamical, Mechanical, and Empirical Criteria
,”
J. Elastomers Plast.
,
36
(
2
), pp.
159
175
.10.1177/0095244304042596
33.
Yuan
,
J.
,
Teng
,
Z.
,
Feng
,
J.
,
Zhang
,
Y.
,
Brown
,
A. J.
,
Gillard
,
J. H.
, and
Lu
,
Z. J. Q.
,
2015
, “
Influence of Material Property Variability on the Mechanical Behaviour of Carotid Atherosclerotic Plaques: A 3D Fluid-Structure Interaction Analysis
,”
Int. J. Numer. Method. Biomed. Eng
.
, 31(8), p. e02722.
34.
Man
,
V.
,
Polzer
,
S.
,
Gasser
,
T. C.
,
Novotny
,
T.
, and
Bursa
,
J.
,
2018
, “
Impact of Isotropic Constitutive Descriptions on the Predicted Peak Wall Stress in Abdominal Aortic Aneurysms
,”
Med. Eng. Phys.
,
53
, pp.
49
57
.10.1016/j.medengphy.2018.01.002
35.
Fehervary
,
H.
,
Smoljkić
,
M.
,
Vander Sloten
,
J.
, and
Famaey
,
N.
,
2016
, “
Planar Biaxial Testing of Soft Biological Tissue Using Rakes: A Critical Analysis of Protocol and Fitting Process
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
135
151
.10.1016/j.jmbbm.2016.01.011
36.
Fok
,
P. W.
, and
Gou
,
K.
,
2020
, “
Finite Element Simulation of Intimal Thickening in 2D Multi-Layered Arterial Cross Sections by Morphoelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
363
, p.
112860
.10.1016/j.cma.2020.112860
37.
Fan
,
Z. M.
,
Liu
,
X.
,
Du
,
C. F.
,
Sun
,
A. Q.
,
Zhang
,
N.
,
Fan
,
Z. M.
,
Fan
,
Y. B.
, and
Deng
,
X. Y.
,
2016
, “
Plaque Components Affect Wall Stress in Stented Human Carotid Artery: A Numerical Study
,”
Acta Mech. Sin. Xuebao
,
32
(
6
), pp.
1149
1154
.10.1007/s10409-016-0572-4
38.
Deokar
,
R. R.
, and
Klamecki
,
B. E.
,
2017
, “
Computational Modeling and Comparative Tissue Damage Analysis of Angioplasty and Orbital Atherectomy Interventional Procedures
,”
ASME J. Med. Devices
,
11
(
2
), pp.
021006
.
39.
Iannaccone
,
F.
,
Debusschere
,
N.
,
De Bock
,
S.
,
De Beule
,
M.
,
Van Loo
,
D.
,
Vermassen
,
F.
,
Segers
,
P.
, and
Verhegghe
,
B.
,
2014
, “
The Influence of Vascular Anatomy on Carotid Artery Stenting: A Parametric Study for Damage Assessment
,”
J. Biomech.
,
47
(
4
), pp.
890
898
.10.1016/j.jbiomech.2014.01.008
40.
Lisický
,
O.
,
Malá
,
A.
,
Bednařík
,
Z.
,
Novotný
,
T.
, and
Burša
,
J.
,
2020
, “
Consideration of Stiffness of Wall Layers is Decisive for Patient-Specific Analysis of Carotid Artery With Atheroma
,”
PLoS One
,
15
(
9
), p.
e0239447
.10.1371/journal.pone.0239447
41.
Di Giuseppe
,
M.
,
Farzaneh
,
S.
,
Zingales
,
M.
,
Pasta
,
S.
, and
Avril
,
S.
,
2021
, “
Patient-Specific Computational Evaluation of Stiffness Distribution in Ascending Thoracic Aortic Aneurysm
,”
J. Biomech.
,
119
, p.
110321
.10.1016/j.jbiomech.2021.110321
42.
Bersi
,
M. R.
,
Acosta Santamaría
,
V. A.
,
Marback
,
K.
,
Di Achille
,
P.
,
Phillips
,
E. H.
,
Goergen
,
C. J.
,
Humphrey
,
J. D.
, and
Avril
,
S.
,
2020
, “
Multimodality Imaging-Based Characterization of Regional Material Properties in a Murine Model of Aortic Dissection
,”
Sci. Rep.
,
10
(
1
), pp.
1
23
.
43.
Bersi
,
M. R.
,
Bellini
,
C.
,
Di Achille
,
P.
,
Humphrey
,
J. D.
,
Genovese
,
K.
, and
Avril
,
S.
,
2016
, “
Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas
,”
ASME J. Biomech. Eng.
,
138
(
7
), pp.
071005
.
44.
Bersi
,
M. R.
,
Bellini
,
C.
,
Humphrey
,
J. D.
, and
Avril
,
S.
,
2019
, “
Local Variations in Material and Structural Properties Characterize Murine Thoracic Aortic Aneurysm Mechanics
,”
Biomech. Model. Mechanobiol.
,
18
(
1
), pp.
203
218
.10.1007/s10237-018-1077-9
45.
Davis
,
F. M.
,
Luo
,
Y.
,
Avril
,
S.
,
Duprey
,
A.
, and
Lu
,
J.
,
2016
, “
Local Mechanical Properties of Human Ascending Thoracic Aneurysms
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
235
249
.10.1016/j.jmbbm.2016.03.025
You do not currently have access to this content.