Abstract

Low-intensity ultrasound has shown promise in promoting the healing and regeneration of articular cartilage degraded by osteoarthritis. In this study, a two-dimensional finite element method (FEM) model was developed for solving the Biot theory equations governing the propagation of continuous ultrasound through the cartilage. Specifically, we computed the ultrasound-induced dilatations and displacements in the microscale cartilage that is represented as consisting of four zones, namely, the chondrocyte cell and its nucleus, the pericellular matrix (PCM) that forms a layer around the chondrocyte, and the extracellular matrix (ECM). The chondrocyte–PCM complex, referred to as the chondron, is embedded in the ECM. We model multiple cartilage configurations where in the ECM layer contains chondrons along the depth, as well as laterally. The top surface of the ECM layer is subjected to specified amplitude and frequency of continuous ultrasound. The resulting wave propagation is modeled by numerically solving the two-dimensional Biot equations for seven frequencies in the 0.5 MHz–5 MHz range. It is seen that ultrasound is attenuated in the ECM and the attenuation increases monotonically with frequency. In contrast, manyfold augmentation of the ultrasound amplitude is observed inside the cytoplasm and the nucleus of the chondrocyte. Chondrocytes act as a major sink of ultrasound energy, thereby reducing the depthwise propagation of ultrasound fluctuations. Regions of high dilatations and displacements were found at the ECM–PCM interface, PCM–chondrocyte interface, as well as in the cytoplasm and nucleus of the chondrocyte. We observe that the ultrasound field around a chondron interacts with that around a neighboring chondron located at the same depth in the ECM layer. The qualitative and quantitative insights gained from our study may be relevant to designing ultrasound-based therapies for osteoarthritis.

References

1.
Haider
,
M. A.
,
2004
, “
A Radial Biphasic Model for Local Cell-Matrix Mechanics in Articular Cartilage
,”
SIAM J. Appl. Math.
,
64
(
5
), pp.
1588
1608
.10.1137/S0036139902417700
2.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Michael Lai
,
W.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.10.1016/0021-9290(84)90031-9
3.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.10.1016/S0021-9290(00)00105-6
4.
Stockwell
,
R. A.
,
1987
, “
Structure and Function of the Chondrocyte Under Mechanical Stress
,”
Joint Loading: Biology and Health of Articular Structures
,
Wright and Sons
,
Bristol, UK
, pp.
126
148
.
5.
Guilak
,
F.
,
1995
, “
Compression-Induced Changes in the Shape and Volume of the Chondrocyte Nucleus
,”
J. Biomech.
,
28
(
12
), pp.
1529
1541
.10.1016/0021-9290(95)00100-X
6.
Guilak
,
F.
, and
Hung
,
C. T.
,
2005
, “
Physical Regulation of Cartilage Metabolism
,”
Basic Orthopaedic Biomechnics
,
Lippincott-Raven
,
Philadelphia
, PA, pp.
259
300
.
7.
Kim
,
E.
,
Guilak
,
F.
, and
Haider
,
M. A.
,
2008
, “
The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading
,”
ASME J. Biomech. Eng.
,
130
(
6
), p. 061009.10.1115/1.2978991
8.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell Sci.
,
108
(
4
), pp.
1497
1508
.10.1242/jcs.108.4.1497
9.
Mizrahi
,
N.
,
Zhou
,
E. H.
,
Lenormand
,
G.
,
Krishnan
,
R.
,
Weihs
,
D.
,
Butler
,
J. P.
,
Weitz
,
D. A.
,
Fredberg
,
J. J.
, and
Kimmel
,
E.
,
2012
, “
Low Intensity Ultrasound Perturbs Cytoskeleton Dynamics
,”
Soft Matter
,
8
(
8
), pp.
2438
2443
.10.1039/c2sm07246g
10.
Naito
,
K.
,
Watari
,
T.
,
Muta
,
T.
,
Furuhata
,
A.
,
Iwase
,
H.
,
Igarashi
,
M.
,
Kurosawa
,
H.
,
Nagaoka
,
I.
, and
Kaneko
,
K.
,
2010
, “
Low-Intensity Pulsed Ultrasound (Lipus) Increases the Articular Cartilage Type II Collagen in a Rat Osteoarthritis Model
,”
J. Orthop. Res.
,
28
(
3
), pp.
361
369
.10.1002/jor.20995
11.
Loyola-Sánchez
,
A.
,
Richardson
,
J.
,
Beattie
,
K. A.
,
Otero-Fuentes
,
C.
,
Adachi
,
J. D.
, and
MacIntyre
,
N. J.
,
2012
, “
Effect of Low-Intensity Pulsed Ultrasound on the Cartilage Repair in People With Mild to Moderate Knee Osteoarthritis: A Double-Blinded, Randomized, Placebo-Controlled Pilot Study
,”
Arch. Phys. Med. Rehabil.
,
93
(
1
), pp.
35
42
.10.1016/j.apmr.2011.07.196
12.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
178
.10.1121/1.1908239
13.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
179
191
.10.1121/1.1908241
14.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
15.
Alexopoulos
,
L. G.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2005
, “
The Biomechanical Role of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
Acta Biomater.
,
1
(
3
), pp.
317
325
.10.1016/j.actbio.2005.02.001
16.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
,
1988
, “
Chondrons Extracted From Canine Tibial Cartilage: Preliminary Report on Their Isolation and Structure
,”
J. Orthop. Res.
,
6
(
3
), pp.
408
419
.10.1002/jor.1100060312
17.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
,
2000
, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
,
2
(
1
), pp.
691
713
.10.1146/annurev.bioeng.2.1.691
18.
Wilkins
,
R. J.
,
Browning
,
J. A.
, and
Urban
,
J. P.
,
2000
, “
Chondrocyte Regulation by Mechanical Load
,”
Biorheology
,
37
(
1–2
), pp.
67
74
.
19.
Bachrach
,
N. M.
,
Valhmu
,
W. B.
,
Stazzone
,
E.
,
Ratcliffe
,
A.
,
Michael Lai
,
W.
, and
Mow
,
V. C.
,
1995
, “
Changes in Proteoglycan Synthesis of Chondrocytes in Articular Cartilage Are Associated With the Time-Dependent Changes in Their Mechanical Environment
,”
J. Biomech.
,
28
(
12
), pp.
1561
1569
.10.1016/0021-9290(95)00103-4
20.
Wu
,
J. Z.
, and
Herzog
,
W.
,
2006
, “
Analysis of the Mechanical Behavior of Chondrocytes in Unconfined Compression Tests for Cyclic Loading
,”
J. Biomech.
,
39
(
4
), pp.
603
616
.10.1016/j.jbiomech.2005.01.007
21.
Guo
,
H.
,
Maher
,
S. A.
, and
Torzilli
,
P. A.
,
2014
, “
A Biphasic Multiscale Study of the Mechanical Microenvironment of Chondrocytes Within Articular Cartilage Under Unconfined Compression
,”
J. Biomech.
,
47
(
11
), pp.
2721
2729
.10.1016/j.jbiomech.2014.05.001
22.
Louw
,
T. M.
,
Budhiraja
,
G.
,
Viljoen
,
H. J.
, and
Subramanian
,
A.
,
2013
, “
Mechanotransduction of Ultrasound is Frequency Dependent Below the Cavitation Threshold
,”
Ultrasound Med. Biol.
,
39
(
7
), pp.
1303
1319
.10.1016/j.ultrasmedbio.2013.01.015
23.
Miller
,
A. D.
,
Subramanian
,
A.
, and
Viljoen
,
H. J.
,
2017
, “
Theoretically Proposed Optimal Frequency for Ultrasound Induced Cartilage Restoration
,”
Theor. Biol. Medical Modell.
,
14
(
1
), pp.
1
14
.10.1186/s12976-017-0067-4
24.
Miller
,
A. D.
,
Chama
,
A.
,
Louw
,
T. M.
,
Subramanian
,
A.
, and
Viljoen
,
H. J.
,
2017
, “
Frequency Sensitive Mechanism in Low-Intensity Ultrasound Enhanced Bioeffects
,”
PLoS One
,
12
(
8
), p.
e0181717
.10.1371/journal.pone.0181717
25.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
ASME J. Appl. Phys.
,
26
(
2
), pp.
182
185
.10.1063/1.1721956
26.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.10.1002/jor.1100150404
27.
Wang
,
C. C.-B.
,
Guo
,
X. E.
,
Sun
,
D.
,
Mow
,
V. C.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2002
, “
The Functional Environment of Chondrocytes Within Cartilage Subjected to Compressive Loading: A Theoretical and Experimental Approach
,”
Biorheology
,
39
(
1–2
), pp.
11
25
.
28.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2003
, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
323
333
.10.1115/1.1579047
29.
Alexopoulos
,
L. G.
,
Williams
,
G. M.
,
Upton
,
M. L.
,
Setton
,
L. A.
, and
Guilak
,
F.
,
2005
, “
Osteoarthritic Changes in the Biphasic Mechanical Properties of the Chondrocyte Pericellular Matrix in Articular Cartilage
,”
J. Biomech.
,
38
(
3
), pp.
509
517
.10.1016/j.jbiomech.2004.04.012
30.
Allard
,
J.
, and
Atalla
,
N.
,
2009
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e
,
Wiley
, Hoboken, NJ.
31.
Nolen-Hoeksema
,
R. C.
,
2000
, “
Modulus-Porosity Relations, Gassmann's Equations, and the Low-Frequency Elastic-Wave Response to Fluids
,”
Geophysics
,
65
(
5
), pp.
1355
1363
.10.1190/1.1444826
32.
Minton
,
A. P.
,
2001
, “
The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media
,”
J. Biol. Chem.
,
276
(
14
), pp.
10577
10580
.10.1074/jbc.R100005200
33.
Ellis
,
R. J.
,
2001
, “
Macromolecular Crowding: An Important but Neglected Aspect of the Intracellular Environment
,”
Curr. Opin. Struct. Biol.
,
11
(
1
), pp.
114
119
.10.1016/S0959-440X(00)00172-X
34.
Guilak
,
F.
,
Tedrow
,
J. R.
, and
Burgkart
,
R.
,
2000
, “
Viscoelastic Properties of the Cell Nucleus
,”
Biochem. Biophys. Res. Commun.
,
269
(
3
), pp.
781
786
.10.1006/bbrc.2000.2360
35.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
,
2000
, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
,
18
(
6
), pp.
891
898
.10.1002/jor.1100180607
36.
Rowat
,
A. C.
,
Lammerding
,
J.
,
Herrmann
,
H.
, and
Aebi
,
U.
,
2008
, “
Towards an Integrated Understanding of the Structure and Mechanics of the Cell Nucleus
,”
BioEssays
,
30
(
3
), pp.
226
236
.10.1002/bies.20720
37.
Kühn
,
T.
,
Ihalainen
,
T. O.
,
Hyväluoma
,
J.
,
Dross
,
N.
,
Willman
,
S. F.
,
Langowski
,
J.
,
Vihinen-Ranta
,
M.
, and
Timonen
,
J.
,
2011
, “
Protein Diffusion in Mammalian Cell Cytoplasm
,”
PLoS One
,
6
(
8
), p.
e22962
.10.1371/journal.pone.0022962
38.
Darling
,
E. M.
,
Zauscher
,
S.
, and
Guilak
,
F.
,
2006
, “
Viscoelastic Properties of Zonal Articular Chondrocytes Measured by Atomic Force Microscopy
,”
Osteoarthritis Cartilage
,
14
(
6
), pp.
571
579
.10.1016/j.joca.2005.12.003
39.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
,
2003
, “
Creep Indentation of Single Cells
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
334
341
.10.1115/1.1572517
40.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2008
, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
,
41
(
2
), pp.
454
464
.10.1016/j.jbiomech.2007.06.019
41.
Baaijens
,
F. P.
,
Trickey
,
W. R.
,
Laursen
,
T. A.
, and
Guilak
,
F.
,
2005
, “
Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
494
501
.10.1007/s10439-005-2506-3
42.
Trickey
,
W. R.
,
Baaijens
,
F. P.
,
Laursen
,
T. A.
,
Alexopoulos
,
L. G.
, and
Guilak
,
F.
,
2006
, “
Determination of the Poisson's Ratio of the Cell: Recovery Properties of Chondrocytes After Release From Complete Micropipette Aspiration
,”
J. Biomech.
,
39
(
1
), pp.
78
87
.10.1016/j.jbiomech.2004.11.006
43.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
,
2005
, “
Unconfined Creep Compression of Chondrocytes
,”
J. Biomech.
,
38
(
1
), pp.
77
85
.10.1016/j.jbiomech.2004.03.013
44.
Dahl
,
K. N.
,
Engler
,
A. J.
,
Pajerowski
,
J. D.
, and
Discher
,
D. E.
,
2005
, “
Power-Law Rheology of Isolated Nuclei With Deformation Mapping of Nuclear Substructures
,”
Biophys. J.
,
89
(
4
), pp.
2855
2864
.10.1529/biophysj.105.062554
45.
Eggli
,
P. S.
,
Hunzinker
,
E. B.
, and
Schenk
,
R. K.
,
1988
, “
Quantitation of Structural Features Characterizing Weight-and Less-Weight-Bearing Regions in Articular Cartilage: A Stereological Analysis of Medical Femoral Condyles in Young Adult Rabbits
,”
Anatom. Rec.
,
222
(
3
), pp.
217
227
.10.1002/ar.1092220302
You do not currently have access to this content.