Abstract

Cerebral aneurysm progression is a result of a complex interplay of the biomechanical and clinical risk factors that drive aneurysmal growth and rupture. Subjects with multiple aneurysms are unique cases wherein clinical risk factors are expected to affect each aneurysm equally, thus allowing for disentangling the effect of biomechanical factors on aneurysmal growth. Toward this end, we performed a comparative computational fluid–structure interaction analysis of aneurysmal biomechanics in image-based models of stable and growing aneurysms in the same subjects, using the cardiovascular simulation platform simvascular. We observed that areas exposed to low shear and the median peak systolic arterial wall displacement were higher by factors of 2 or more and 1.5, respectively, in growing aneurysms as compared to stable aneurysms. Furthermore, we defined a novel metric, the oscillatory stress index (OStI), which indicates locations of oscillating arterial wall stresses. We observed that growing aneurysms were characterized by regions of combined low wall shear and high OStI, which we hypothesize to be associated with regions of collagen degradation and remodeling. Such regions were either absent or below 5% of the surface area in stable aneurysms. Our results lay the groundwork for future studies in larger cohorts of subjects, to evaluate the statistical significance of these biomechanical parameters in cerebral aneurysm growth.

References

1.
Rinkel
,
G. J. E.
,
Djibuti
,
M.
,
Algra
,
A.
, and
van Gijn
,
J.
,
1998
, “
Prevalence and Risk of Rupture of Intracranial Aneurysms
,”
Stroke
,
29
(
1
), pp.
251
256
.10.1161/01.STR.29.1.251
2.
Schievink
,
W. I.
,
1997
, “
Intracranial Aneurysms
,”
New Engl. J. Med.
,
336
(
1
), pp.
28
40
.10.1056/NEJM199701023360106
3.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2009
, “
Fluid-Structure Interaction Modeling of Blood Flow and Cerebral Aneurysm: Significance of Artery and Aneurysm Shapes
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3613
3621
.10.1016/j.cma.2008.08.020
4.
Takizawa
,
K.
,
Brummer
,
T.
,
Tezduyar
,
T. E.
, and
Chen
,
P. R.
,
2012
, “
A Comparative Study Based on Patient-Specific Fluid-Structure Interaction Modeling of Cerebral Aneurysms
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
010908
.10.1115/1.4005071
5.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
NeuroImage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
6.
Cebral
,
J. R.
,
Vazquez
,
M.
,
Sforza
,
D. M.
,
Houzeaux
,
G.
,
Tateshima
,
S.
,
Scrivano
,
E.
,
Bleise
,
C.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2015
, “
Analysis of Hemodynamics and Wall Mechanics at Sites of Cerebral Aneurysm Rupture
,”
J. NeuroInterven. Surg.
,
7
(
7
), pp.
530
536
.10.1136/neurintsurg-2014-011247
7.
Blankena
,
R.
,
Kleinloog
,
R.
,
Verweij
,
B. H.
,
Van Ooij
,
P.
,
Ten Haken
,
B.
,
Luijten
,
P. R.
,
Rinkel
,
G. J.
, and
Zwanenburg
,
J. J.
,
2016
, “
Thinner Regions of Intracranial Aneurysm Wall Correlate With Regions of Higher Wall Shear Stress: A 7T MRI Study
,”
Am. J. Neuroradiol.
,
37
(
7
), pp.
1310
1317
.10.3174/ajnr.A4734
8.
Voß
,
S.
,
Glaßer
,
S.
,
Hoffmann
,
T.
,
Beuing
,
O.
,
Weigand
,
S.
,
Jachau
,
K.
,
Preim
,
B.
,
Thévenin
,
D.
,
Janiga
,
G.
, and
Berg
,
P.
,
2016
, “
Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant Versus Patient-Specific Wall Thickness
,”
Comput. Math. Methods Med.
,
2016
, pp.
1
8
.10.1155/2016/9854539
9.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Benson
,
D. J.
,
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2009
, “
Computational Fluid–Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.10.1007/s00466-009-0419-y
10.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
11.
Lan
,
H.
,
Updegrove
,
A.
,
Wilson
,
N. M.
,
Maher
,
G. D.
,
Shadden
,
S. C.
, and
Marsden
,
A. L.
,
2018
, “
A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
024501
.10.1115/1.4038751
12.
Zhu
,
C.
,
Vedula
,
V.
,
Parker
,
D.
,
Wilson
,
N.
,
Shadden
,
S.
, and
Marsden
,
A.
,
2022
, “
svFSI: A Multiphysics Package for Integrated Cardiac Modeling
,”
J. Open Res. Softw.
,
7
(
78
), p.
4118
.10.21105/joss.04118
13.
Bäumler
,
K.
,
Vedula
,
V.
,
Sailer
,
A. M.
,
Seo
,
J.
,
Chiu
,
P.
,
Mistelbauer
,
G.
,
Chan
,
F. P.
,
Fischbein
,
M. P.
,
Marsden
,
A. L.
, and
Fleischmann
,
D.
,
2020
, “
Fluid–Structure Interaction Simulations of Patient-Specific Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1607
1628
.10.1007/s10237-020-01294-8
14.
Vedula
,
V.
,
Lee
,
J.
,
Xu
,
H.
,
Kuo
,
C. C.
,
Hsiai
,
T. K.
, and
Marsden
,
A. L.
,
2017
, “
A Method to Quantify Mechanobiologic Forces During Zebrafish Cardiac Development Using 4-D Light Sheet Imaging and Computational Modeling
,”
PLoS Comput. Biol.
,
13
(
10
), p.
e1005828
.10.1371/journal.pcbi.1005828
15.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Hughes
,
T. J.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.10.1007/s00466-008-0315-x
16.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
17.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.10.1016/S0045-7825(98)80008-X
18.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
,
2007
, “
Numerical Investigation of the Effect of Hypertensive Blood Pressure on Cerebral Aneurysm–Dependence of the Effect on the Aneurysm Shape
,”
Int. J. Numer. Methods Fluids
,
54
(
6–8
), pp.
995
1009
.10.1002/fld.1497
19.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
,
Computational Inelasticity, Vol. 7 of Interdisciplinary Applied Mathematics
,
Springer-Verlag
,
New York
.
20.
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
,
Purdue
,
J.
,
McPhail
,
T.
,
Chen
,
P. R.
,
Warren
,
J.
, and
Tezduyar
,
T. E.
,
2011
, “
Patient-Specific Arterial Fluid-Structure Interaction Modeling of Cerebral Aneurysms
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
308
323
.10.1002/fld.2360
21.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2014
, “
Fluid–Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms
,”
Visualization and Simulation of Complex Flows in Biomedical Engineering, Vol. 12 of Lecture Notes in Computational Vision and Biomechanics
,
Springer Science+Business Media
,
Dordrecht
, The Netherlands, pp.
25
45
.
22.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Schwaab
,
M.
, and
Conklin
,
B. S.
,
2008
, “
Arterial Fluid Mechanics Modeling With the Stabilized Space–Time Fluid–Structure Interaction Technique
,”
Int. J. Numer. Methods Fluids
,
57
(
5
), pp.
601
629
.10.1002/fld.1633
23.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Brummer
,
T.
, and
Chen
,
P. R.
,
2011
, “
Space-Time Fluid-Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
11
), pp.
1665
1710
.10.1002/cnm.1433
24.
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2011
, “
Blood Vessel Tissue Prestress Modeling for Vascular Fluid–Structure Interaction Simulation
,”
Finite Elem. Anal. Des.
,
47
(
6
), pp.
593
599
.10.1016/j.finel.2010.12.015
25.
Macdonald
,
M. E.
, and
Frayne
,
R.
,
2015
, “
Phase Contrast MR Imaging Measurements of Blood Flow in Healthy Human Cerebral Vessel Segments
,”
Physiol. Meas.
,
36
(
7
), pp.
1517
1527
.10.1088/0967-3334/36/7/1517
26.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.10.1080/10255840903413565
27.
Xiao
,
N.
,
Alastruey
,
J.
, and
Alberto Figueroa
,
C.
,
2014
, “
A Systematic Comparison Between 1-D and 3-D Hemodynamics in Compliant Arterial Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
2
), pp.
204
231
.10.1002/cnm.2598
28.
Boster
,
K. A. S.
,
Shidhore
,
T. C.
,
Cohen-Gadol
,
A. A.
,
Christov
,
I. C.
, and
Rayz
,
V. L.
,
2022
, “
Challenges in Modeling Hemodynamics in Cerebral Aneurysms Related to Arteriovenous Malformations
,”
Cardiovasc. Eng. Technol.
,
13
(
5
), pp.
673
684
.10.1007/s13239-022-00609-3
29.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid-Structure Interaction
,
Wiley
,
Chichester, UK
.
30.
Moireau
,
P.
,
Xiao
,
N.
,
Astorino
,
M.
,
Figueroa
,
C. A.
,
Chapelle
,
D.
,
Taylor
,
C. A.
, and
Gerbeau
,
J.-F.
,
2012
, “
External Tissue Support and Fluid–Structure Simulation in Blood Flows
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
1
18
.10.1007/s10237-011-0289-z
31.
Xiang
,
J.
,
Tutino
,
V. M.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2014
, “
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
,”
Am. J. Neuroradiol.
,
35
(
10
), pp.
1849
1857
.10.3174/ajnr.A3710
32.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
AJNR Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
33.
Longo
,
M.
,
Granata
,
F.
,
Racchiusa
,
S.
,
Mormina
,
E.
,
Grasso
,
G.
,
Longo
,
G. M.
,
Garufi
,
G.
,
Salpietro
,
F. M.
, and
Alafaci
,
C.
,
2017
, “
Role of Hemodynamic Forces in Unruptured Intracranial Aneurysms: An Overview of a Complex Scenario
,”
World Neurosurg.
,
105
(
2017
), pp.
632
642
.10.1016/j.wneu.2017.06.035
34.
Boussel
,
L.
,
Rayz
,
V.
,
McCulloch
,
C.
,
Martin
,
A.
,
Acevedo-Bolton
,
G.
,
Lawton
,
M.
,
Higashida
,
R.
,
Smith
,
W. S.
,
Young
,
W. L.
, and
Saloner
,
D.
,
2008
, “
Aneurysm Growth Occurs at Region of Low Wall Shear Stress: Patient-Specific Correlation of Hemodynamics and Growth in a Longitudinal Study
,”
Stroke
,
39
(
11
), pp.
2997
3002
.10.1161/STROKEAHA.108.521617
35.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
,
35
(
11
), pp.
2500
2505
.10.1161/01.STR.0000144648.89172.0f
36.
Frösen
,
J.
,
Cebral
,
J.
,
Robertson
,
A. M.
, and
Aoki
,
T.
,
2019
, “
Flow-Induced, Inflammation-Mediated Arterial Wall Remodeling in the Formation and Progression of Intracranial Aneurysms
,”
Neurosurg. Focus
,
47
(
1
), p.
E21
.10.3171/2019.5.FOCUS19234
37.
Vanrossomme
,
A.
,
Eker
,
O.
,
Thiran
,
J.-P.
,
Courbebaisse
,
G.
, and
Boudjeltia
,
K. Z.
,
2015
, “
Intracranial Aneurysms: Wall Motion Analysis for Prediction of Rupture
,”
Am. J. Neuroradiol.
,
36
(
10
), pp.
1796
1802
.10.3174/ajnr.A4310
38.
Liu
,
P.
,
Song
,
Y.
,
Zhou
,
Y.
,
Liu
,
Y.
,
Qiu
,
T.
,
An
,
Q.
,
Song
,
J.
,
Li
,
P.
,
Shi
,
Y.
,
Li
,
S.
,
Quan
,
K.
,
Yang
,
G.-Y.
, and
Zhu
,
W.
,
2018
, “
Cyclic Mechanical Stretch Induced Smooth Muscle Cell Changes in Cerebral Aneurysm Progress by Reducing Collagen Type IV and Collagen Type VI Levels
,”
Cell. Physiol. Biochem.
,
45
(
3
), pp.
1051
1060
.10.1159/000487347
39.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
X.
,
Kvamsdal
,
T.
,
Brekken
,
R.
, and
Isaksen
,
J. G.
,
2010
, “
A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,”
Comput. Mech.
,
46
(
1
), pp.
3
16
.10.1007/s00466-009-0421-4
40.
Holzapfel
,
G.
,
2016
,
Collagen in Arterial Walls: Biomechanical Aspects
,
P.
Fratzl
, ed.,
Collagen, Springer US
,
Boston, MA
, pp.
285
324
.
41.
Hariton
,
I.
,
DeBotton
,
G.
,
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2007
, “
Stress-Driven Collagen Fiber Remodeling in Arterial Walls
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
163
175
.10.1007/s10237-006-0049-7
42.
Henningsson
,
M.
,
Malik
,
S.
,
Botnar
,
R.
,
Castellanos
,
D.
,
Hussain
,
T.
, and
Leiner
,
T.
,
2022
, “
Black–Blood Contrast in Cardiovascular MRI
,”
J. Magn. Reson. Imaging
,
55
(
1
), pp.
61
80
.10.1002/jmri.27399
43.
Terem
,
I.
,
Ni
,
W. W.
,
Goubran
,
M.
,
Rahimi
,
M. S.
,
Zaharchuk
,
G.
,
Yeom
,
K. W.
,
Moseley
,
M. E.
,
Kurt
,
M.
, and
Holdsworth
,
S. J.
,
2018
, “
Revealing Sub-Voxel Motions of Brain Tissue Using Phase-Based Amplified MRI (aMRI)
,”
Magn. Reson. Med.
,
80
(
6
), pp.
2549
2559
.10.1002/mrm.27236
You do not currently have access to this content.