Abstract

This study has investigated the response of the Total Human Model for Safety (THUMS) lower extremity finite element model under blast loading. Response of the model was estimated in simulated underbody blast (UBB) loading using floorplate impact velocities of increasing severity. Correlation and analysis (CORA) ratings suggested a good match between numerical response and available experimental data. The model response was then investigated in an antipersonnel landmine explosion. The model was found stable in the nearfield blast and sensitive to the threat definition. The lower extremity injury was predicted when detonation occurred below the heel. The model predicted major injuries localized to the hindfoot and midfoot with minimal damage to the forefoot, consistent with the findings in the literature. The damage to the individual bones of the foot was measured in terms of percentage change in mass and element eroded.

References

1.
Owens
,
B. D.
,
Kragh
,
J. F.
,
Macaitis
,
J.
,
Svoboda
,
S. J.
, and
Wenke
,
J. C.
,
2007
, “
Characterization of Extremity Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Orthop. Trauma
,
21
(
4
), pp.
254
257
.10.1097/BOT.0b013e31802f78fb
2.
North Atlantic Treaty Organization Research and Technology Organization Human Factors and Medicine Panel
,
2007
, Test Methodology Protection Vehicle Occupants against Anti-Vehicular Landmine Effects, Technical Report No.
TR-HFM-090
.https://apps.dtic.mil/sti/pdfs/ADA473218.pdf
3.
Hampton
,
C. E.
,
Kleinberger
,
M.
,
Schlick
,
M.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2019
, “
Analysis of Force Mitigation by Boots in Axial Impacts Using a Lower Leg Finite Element Model
,”
Stapp Car Crash J.
,
63
(
November
), pp.
267
289
.10.4271/2019-22-0011
4.
Hostetler
,
Z. S.
,
Aira
,
J.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2019
, “
A Computational Study of the Biomechanical Response of the Human Lower Extremity Subjected to High Rate Vertical Accelerative Loading
,”
IRCOBI Conference
, Florence, Italy, Sept. 11–13, pp.
662
673
.
5.
Perry
,
B. J.
,
Gabler
,
L.
,
Bailey
,
A.
,
Henderson
,
K.
,
Brozoski
,
F.
, and
Salzar
,
R. S.
,
2014
, “
Lower Extremity Characterization and Injury Mitigation
,”
IRCOBI Conference
, Berlin, Germany, Sept. 10–12, pp.
186
197
.http://www.ircobi.org/wordpress/downloads/irc14/pdf_files/26.pdf
6.
Funk
,
J. R.
,
Crandall
,
J. R.
,
Tourret
,
L. J.
,
MacMahon
,
C. B.
,
Bass
,
C. R.
,
Patrie
,
J. T.
,
Khaewpong
,
N.
, and
Eppinger
,
R. H.
,
2002
, “
The Axial Injury Tolerance of the Human Foot/Ankle Complex and the Effect of Achilles Tension
,”
ASME J. Biomech. Eng
,
124
(
6
), pp.
750
757
.10.1115/1.1514675
7.
Kuppa
,
S.
,
Wang
,
J.
,
Haffner
,
M.
, and
Eppinger
,
R.
,
2001
, “
Lower Extremity Injuries and Associated Injury Criteria
,”
17th ESV Conference
, Amsterdam, The Netherlands, June 4–7, pp.
1
15
.https://www.nhtsa.gov/sites/nhtsa.gov/files/17esv_457.pdf
8.
Seipel
,
R. C.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Boynton
,
M. D.
,
2001
, “
Biomechanics of Calcaneal Fractures: A Model for the Motor Vehicle
,”
Clin. Orthop. Relat. Res
,
388
(
388
), pp.
218
224
.10.1097/00003086-200107000-00030
9.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Kumaresan
,
S.
, and
Boynton
,
M. D.
,
1997
, “
Axial Impact Biomechanics of the Human Foot-Ankle Complex
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
433
437
.10.1115/1.2798290
10.
McKay
,
B. J.
, and
Bir
,
C. A.
,
2009
, “
Lower Extremity Injury Criteria for Evaluating Military Vehicle Occupant Injury in Underbelly Blast Events
,”
Stapp Car Crash J.
,
53
(
November
), pp.
229
249
.10.4271/2009-22-0009
11.
Ramasamy
,
A.
,
Masouros
,
S. D.
,
Newell
,
N.
,
Hill
,
A. M.
,
Proud
,
W. G.
,
Brown
,
K. A.
,
Bull
,
A. M. J.
, and
Clasper
,
J. C.
,
2011
, “
In-Vehicle Extremity Injuries From Improvised Explosive Devices: Current and Future Foci
,”
Philos. Trans. R. Soc. B Biol. Sci
,
366
(
1562
), pp.
160
170
.10.1098/rstb.2010.0219
12.
Gallenberger
,
K.
,
2013
, “Foot and Ankle Injuries in Variable Energy Impacts,”
Master's thesis
,
Marquette University
, Milwaukee, WI.https://epublications.marquette.edu/theses_open/186/
13.
Chirvi
,
S.
,
Pintar
,
F.
,
Yoganandan
,
N.
,
Banerjee
,
A.
,
Schlick
,
M.
,
Curry
,
W.
, and
Voo
,
L.
,
2017
, “
Human Foot-Ankle Injuries and Associated Risk Curves From Under Body Blast Loading Conditions
,”
Stapp Car Crash J.
,
61
, pp.
157
173
.10.4271/2017-22-0006
14.
Pintar
,
F. A.
,
Schlick
,
M. B.
,
Yoganandan
,
N.
,
Voo
,
L.
,
Merkle
,
A. C.
, and
Kleinberger
,
M.
,
2016
, “
Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia From Vertical Loading
,”
Stapp Car Crash J.
,
60
, pp.
247
285
.10.4271/2016-22-0010
15.
Barbir
,
A.
,
2005
, “
Validation of Lower Limb Surrogates as Injury Assessment Tools in Floor Impacts Due to Anti-Vehicular Land Mines
,” Thesis, Wayne State University, Detroit, MI.
16.
Mckay
,
B. J.
,
2010
, “Development of Lower Extremity Injury Criteria and Biomechanical Surrogate to Evaluate Military Vehicle Occupant Injury During an Explosive Blast Event,”
Ph.D. dissertation
, Wayne State University, Detroit, MI.https://digitalcommons.wayne.edu/oa_dissertations/146
17.
Baker
,
W. A.
,
Chowdhury
,
M. R.
, and
Untaroiu
,
C. D.
,
2018
, “
Validation of a Booted Finite Element Model of the WIAMan ATD Lower Limb in Component and Whole-Body Vertical Loading Impacts With an Assessment of the Boot Influence Model on Response
,”
Traffic Inj. Prev.
,
19
(
5
), pp.
549
554
.10.1080/15389588.2018.1433829
18.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
,
Sagara
,
B. M.
,
Demetropoulos
,
C. K.
,
Dooley
,
C. J.
, and
Merkle
,
A. C.
,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
SAE
Paper No. 2016-22-0009.10.4271/2016-22-0009
19.
Harris
,
R. M.
,
Rountree
,
M. S.
,
Griffin
,
L. V.
,
Hayda
,
R. A.
, and
Bice
,
T.
,
2000
, “
Volume 2-Final Report of the Lower Extremity Assessment Program (LEAP 99-2
),” Geneva International Centre for Humanitarian Demining, Geneva, Switzerland, Report No.
ATC-8199
, Vol. 2.https://www.gichd.org/en/resources/publications/detail/publication/volume-ii-final-report-of-thelower-extremity-assessment-program-leap-99-2/
20.
Dong
,
L.
,
Zhu
,
F.
,
Jin
,
X.
,
Suresh
,
M.
,
Jiang
,
B.
,
Sevagan
,
G.
,
Cai
,
Y.
,
Li
,
G.
, and
Yang
,
K. H.
,
2013
, “
Blast Effect on the Lower Extremities and Its Mitigation: A Computational Study
,”
J. Mech. Behav. Biomed. Mater
,
28
, pp.
111
124
.10.1016/j.jmbbm.2013.07.010
21.
Roth
,
S.
,
Torres
,
F.
,
Feuerstein
,
P.
, and
Thoral-Pierre
,
K.
,
2013
, “
Anthropometric Dependence of the Response of a Thorax FE Model Under High Speed Loading: Validation and Real World Accident Replication
,”
Comput. Methods Programs Biomed.
,
110
(
2
), pp.
160
170
.10.1016/j.cmpb.2012.11.004
22.
Suhaimi
,
K
, Mohd Sohaimi, R. M., Knight, V. F., Sheng, T. K., Megat Ahmad, M. M. H., Md. Isa, M. F., Mohd Sohaimi, A. S., et al.,
2017
, “
Simulation of hybrid-III Dummy Response Using Three LS-DYNA Blast Methods
,”
Def. S T Tech. Bull
,
10
(
2
), pp.
111
120
.https://www.stride.gov.my/v2/images/penerbitan/buletinteknikal/2017_vol_10_num_2.pdf#page=16
23.
Fielding
,
R. A.
,
Kraft
,
R. H.
,
Przekwas
,
A.
, and
Tan
,
X. G.
,
2015
, “
Development of a Lower Extremity Model for High Strain Rate Impact Loading
,”
Int. J. Exp. Comput. Biomech.
,
3
(
2
), p.
161
.10.1504/IJECB.2015.070427
24.
Rebelo
,
E. A.
,
Grigoriadis
,
G.
,
Carpanen
,
D.
,
Bull
,
A. M. J.
, and
Masouros
,
S. D.
,
2021
, “
An Experimentally Validated Finite Element Model of the Lower Limb to Investigate the Efficacy of Blast Mitigation Systems
,”
Front. Bioeng. Biotechnol.
,
9
(
May
), pp.
1
11
.10.3389/fbioe.2021.665656
25.
Suhaimi
,
K.
,
Risby
,
M. S.
,
Tan
,
K. S.
, and
Knight
,
V. F.
,
2016
, “
Simulation on the Shock Response of Vehicle Occupant Subjected to Underbelly Blast Loading
,”
Procedia Comp. Sci.
,
80
, pp.
1223
1231
.10.1016/j.procs.2016.05.488
26.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2013
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol
,
12
(
3
), pp.
511
531
.10.1007/s10237-012-0421-8
27.
Huang
,
Y.
,
2015
, “Simulation of Blast on Porcine Head,” Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, Report No.
ARL-TR-7340
.https://apps.dtic.mil/sti/pdfs/ADA621583.pdf
28.
Lockhart
,
P. A.
,
2010
,
Primary Blast Injury of the Head: Numerical Prediction and Evaluation of Protection
,
University of Waterloo
, Waterloo, ON N2L 3G1, Canada.http://hdl.handle.net/10012/5422
29.
Yu
,
X.
, and
Ghajari
,
M.
,
2019
, “
An Assessment of Blast Modelling Techniques for Injury Biomechanics Research
,”
Int. J. Numer. Method Biomed. Eng.
,
35
(
12
), pp.
1
15
.10.1002/cnm.3258
30.
Thoral-Pierre
,
K.
,
Roth
,
S.
, and
Goumtcha
,
A. A.
,
2010
, “
Biomechanical Model of Thorax Under Blast Loading: A Three Dimensional Study
,”
Int. J. Numer. Method Biomed. Eng.
,
26
(
1
), pp.
807
827
.10.1002/cnm.2694
31.
Roberts
,
J. C.
,
Merkle
,
A. C.
,
Biermann
,
P. J.
,
Ward
,
E. E.
,
Carkhuff
,
B. G.
,
Cain
,
R. P.
, and
O'Connor
,
J. V.
,
2007
, “
Computational and Experimental Models of the Human Torso for Non-Penetrating Ballistic Impact
,”
J. Biomech
,
40
(
1
), pp.
125
136
.10.1016/j.jbiomech.2005.11.003
32.
Bertucci
,
R.
,
Prabhu
,
R.
,
Horstemeyer
,
M. F.
, and
Mao
,
Y.
,
2018
, “
An Anatomically-Relevant Computational Model for Primary Blast Effects on the Human Lower Extremity
,”
J. Mech. Med. Bio.
,
18
(
6
), pp.
1
16
.10.1142/S0219519418500574
33.
Oyeka
,
O.
,
2013
, Explicit Finite Element Comparison of the Lower Human Extremity Under Blast Load,
M.S. thesis
,
Mississippi State University
, Mississippi State, MS.https://scholarsjunction.msstate.edu/td/2156
34.
Cronin
,
D. S.
,
2003
, “
Numerical Modeling of a Simplified Human Leg to Characterize Landmine Threats
,”
Proceedings of the Eudem2-Scot Conference
, Brussels, Belgium, Sept. 15–18, pp.
651
657
.https://www.gichd.org/fileadmin/pdf/LIMA/Eudem2scotCronin_numericalmodeling.pdf
35.
Motuz
,
J.
,
Cronin
,
D. S.
,
Worswick
,
M.
,
Bourget
,
D.
,
Williams
,
K.
, and
Pageau
,
G.
,
2001
, “
Numerical Modelling of a Simplified Surrogate Leg Subject to an Anti-Personnel Blast Mine
,”
19th International Symposium of Ballistics
, Interlaken, Switzerland,
May
7–11, pp.
7
11
.https://www.researchgate.net/publication/286878957_Numerical_modeling_of_a_simplified_surrogate_leg_subject_to_an_anti-personnel_blast_mine
36.
Manual
,
K. U. S.
, and
Ii
,
V.
,
2012
,
Keyword User'S Manual Volume Ii
,
II
(
February
).
37.
Vikram
,
A.
,
Chawla
,
A.
, and
Mukherjee
,
S.
,
2022
, “
Numerical Investigation of THUMS (Total HUman Model for Safety) Lower Extremity FE Model for Under-Body Blast Loading
,”
Mater. Today Proc.
, pp.
2
3
.10.1016/j.matpr.2022.09.546
38.
Gallagher
,
A. J.
,
Anniadh
,
A. N.
,
Bruyere
,
K.
,
Otténio
,
M.
,
Xie
,
H.
, and
Gilchrist
,
M. D.
,
2012
, “
Dynamic Tensile Properties of Human Skin
,” International Research Council on the Biomechanics of Injury,
IRCOBI Conference 2012
, Dublin, Ireland, Sept. 12–14, pp.
494
502
.http://hdl.handle.net/10197/4772
39.
Trimble
,
K.
, and
Clasper
,
J.
,
2001
, “
Anti-Personnel Mine Injury; Mechanism and Medical Management
,”
J. R. Army Med. Corps
,
147
(
1
), pp.
73
79
.10.1136/jramc-147-01-07
40.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,” 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (
ESV
), Stuttgart, Germany, Apr. 3–6, Paper No. 09–0407.https://www-esv.nhtsa.dot.gov/Proceedings/21/09-0407.pdf
41.
NATO Research and Technology Organization
,
2004
, Test Methodologies Personal Protective Equipment Against Anti-Personnel Mine Blast, NATO Research and Technology Organization, Neuilly-Sur-Seine, France, Report No.
NATO RTO HFM TG-024
.https://apps.dtic.mil/sti/citations/ADA424297
42.
Ramasamy
,
M. A.
, et al.,
2013
, “
Outcomes of IED Foot and Ankle Blast Injuries
,”
J. Bone Jt. Surg. Ser. A
,
95
(
5
), pp.
1
7
.10.2106/JBJS.K.01666
43.
Bergeron
,
D. M.
,
Coley
,
G. G.
,
Fall
,
R. W.
, and
Anderson
,
I. B.
,
2006
, “
Assessment of Lower Leg Injury From Land Mine Blast—Phase 1
,” Defence R&D Canada, Canada, Report No.
DRDC Suffield TR 2006‐051
.https://www.gichd.org/fileadmin/pdf/LIMA/AssessmentLowerLeg1.pdf
You do not currently have access to this content.