Abstract

Ballistic shields protect users from a variety of threats, including projectiles. Shield back-face deformation (BFD) is the result of the shield deflecting or absorbing a projectile and deforming toward the user. Back-face deformation can result in localized blunt loading to the upper extremity, where the shield is supported by the user. Two vulnerable locations along the upper extremity were investigated—the wrist and elbow—on eight postmortem human subjects (PMHS) using a pneumatic impacting apparatus for investigating the fracture threshold as a result of behind shield blunt trauma (BSBT). Impacting parameters were established by subjecting an augmented WorldSID anthropomorphic test device (ATD) positioned behind a ballistic shield to ballistic impacts. These data were used to form the impact parameters applied to PMHS, where the wrist most frequently fractured at the distal radius and the elbow most frequently fractured at the radial head. The fracture threshold for the wrist was 5663±1386 N (mean±standard deviation), higher than the elbow at 4765±894 N (though not significantly, p =0.15). The failure impact velocity for wrist impacts was 17.7±2.1 m/s, while for the elbow, the failure impact velocity was 19.5±0.9 m/s. An approximate 10% risk of fracture threshold was identified on the modified WorldSID ATD (no flesh analogue included) to inform future protective standards.

References

1.
Cannon
,
L.
,
2001
, “
Behind Armour Blunt Trauma - An Emerging Problem
,”
J. R. Army Med Corps
,
147
(
1
), pp.
87
96
.10.1136/jramc-147-01-09
2.
Herre
,
B.
,
Samborska
,
V.
,
Ritchie
,
H.
,
Hasell
,
J.
,
Mathieu
,
E.
, and
Roser
,
M.
,
2023
, “
Terrorism
,” OurWorldInData.org, accessed Jan. 10, 2024, https://ourworldindata.org/terrorism
3.
National Institute of Justice
,
1985
, “
Ballistic Resistant Protective Materials
,”
National Institute of Justice
,
Washington, DC
, Standard No. 0108(01).
4.
National Institute of Justice
,
2008
, “
Ballistic Resistance of Body Armor
,”
National Institute of Justice
,
Washington, DC
, Standard No. 0101(06).
5.
Freitas
,
C.
,
Mathis
,
J.
,
Scott
,
N.
,
Bigger
,
R.
, and
MacKiewicz
,
J.
,
2014
, “
Dynamic Response Due to Behind Helmet Blunt Trauma Measured With a Human Head Surrogate
,”
Int. J. Med. Sci.
,
11
(
5
), pp.
409
425
.10.7150/ijms.8079
6.
Bir
,
C.
,
Lance
,
R.
,
Stojsih-Sherman
,
S.
, and
Cavanaugh
,
J.
,
2017
, “
Behind Armour Blunt Trauma: Recreation of Field Cases for the Assessment of Backface Signature Testing
,”
30th International Symposium on Ballistics
, Long Beach, CA, Sept. 11–15, pp.
1264
1275
.10.12783/ballistics2017/16912
7.
Rafaels
,
K. A.
,
Cutcliffe
,
H. C.
,
Salzar
,
R. S.
,
Davis
,
M.
,
Boggess
,
B.
,
Bush
,
B.
,
Harris
,
R.
, et al.,
2015
, “
Injuries of the Head From Backface Deformation of Ballistic Protective Helmets Under Ballistic Impact
,”
J. Forensic Sci.
,
60
(
1
), pp.
219
225
.10.1111/1556-4029.12570
8.
Bass
,
C. R.
,
Salzar
,
R. S.
,
Lucas
,
S. R.
,
Davis
,
M.
,
Donnellan
,
L.
,
Folk
,
B.
,
Sanderson
,
E.
, and
Waclawik
,
S.
,
2006
, “
Injury Risk in Behind Armour Blunt Thoracic Trauma
,”
Int. J. Occup. Saf. Ergon.
,
12
(
4
), pp.
429
442
.10.1080/10803548.2006.11076702
9.
Steinmann
,
N.
,
de Lange
,
J.
,
Binette
,
J.-S.
, and
Quenneville
,
C.
,
2021
, “
Quantification of Behind Shield Blunt Impacts Using a Modified Upper Extremity Anthropomorphic Test Device
,”
ASME J. Biomech. Eng.
,
144
(
9
), p.
091010
.10.1115/1.4054200
10.
de Lange
,
J.
,
Burrows
,
L.
,
Binette
,
J.-S.
, and
Quenneville
,
C.
,
2023
, “
Behind Shield Blunt Trauma: Characterizing the Back-Face Deformation of Shields With a Focus on Upper Limb Loading
,”
Ann. Biomed. Eng.
,
51
(
6
), pp.
1331
1342
.10.1007/s10439-023-03141-0
11.
de Lange
,
J.
,
Burrows
,
L.
,
Wadera
,
A.
, and
Quenneville
,
C.
,
2023
, “
Injury Risk for the Hand and Forearm Under Loading Representative of Behind Shield Blunt Trauma
,”
Ann. Biomed. Eng.
,
52
(
3
), pp.
707
718
.10.1007/s10439-023-03418-4
12.
Duma
,
S.
,
Boggess
,
B.
,
Crandall
,
J.
,
Hurwitz
,
S.
,
Seki
,
K.
, and
Aoki
,
T.
,
2001
, “
Analysis of Upper Extremity Response Under Side Air Bag Loading
,” SAE Paper No. 2001-06-0016. 10.4271/2001-06-0016
13.
Duma
,
S.
,
Boggess
,
B.
,
Crandall
,
J.
, and
MacMahon
,
C.
,
2003
, “
Injury Risk Function for the Small Female Wrist in Axial Loading
,”
Accid. Anal. Prev.
,
35
(
6
), pp.
869
875
.10.1016/S0001-4575(02)00092-1
14.
Duma
,
S.
,
Schreiber
,
P.
,
McMaster
,
J.
,
Crandall
,
J.
, and
Bass
,
C.
,
2002
, “
Fracture Tolerance of the Male Forearm: The Effect of Pronation Versus Supination
,”
Proc. Inst. Mech. Eng., Part D
,
216
(
8
), pp.
649
654
.10.1177/095440700221600803
15.
Reeves
,
J.
,
Burkhart
,
T.
, and
Dunning
,
C.
,
2014
, “
The Effect of Static Muscle Forces on the Fracture Strength of the Intact Distal Radius In Vitro in Response to Simulated Forward Fall Impacts
,”
J. Biomech.
,
47
(
11
), pp.
2672
2678
.10.1016/j.jbiomech.2014.05.010
16.
Mölsä
,
J.
,
Kujala
,
U.
,
Myllynen
,
P.
,
Torstila
,
I.
, and
Airaksinen
,
O.
,
2013
, “
Injuries to the Upper Extremity in Ice Hockey: Analysis of a Series of 760 Injuries
,”
Am. J. Sports Med.
,
31
(
5
), pp.
751
757
.10.1177/03635465030310051901
17.
Hardy
,
W.
,
Schneider
,
L.
, and
Reed
,
M.
,
1998
, “
Comparison of Airbag-Aggressivity Predictors in Relation to Forearm Fractures
,”
SAE Trans.
,
107
(
Section 6
), pp.
1366
1379
.10.4271/980856
18.
Martinez
,
A.
,
Chakravarty
,
A.
, and
Quenneville
,
C.
,
2018
, “
The Effect of Impact Duration on the Axial Fracture Tolerance of the Isolated Tibia During Automotive and Military Impacts
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
315
320
.10.1016/j.jmbbm.2017.11.013
19.
Amis
,
A.
, and
Miller
,
J.
,
1995
, “
The Mechanisms of Elbow Fractures: An Investigation Using Impact Tests In Vitro
,”
Injury
,
26
(
3
), pp.
163
168
.10.1016/0020-1383(95)93494-3
20.
Spadaro
,
J.
,
Werner
,
F.
,
Brenner
,
R.
,
Fortino
,
M.
,
Fay
,
L.
, and
Edwards
,
W.
,
1994
, “
Cortical and Trabecular Bone Contribute Strength to the Osteopenic Distal Radius
,”
J. Orthop. Res.
,
12
(
2
), pp.
211
218
.10.1002/jor.1100120210
21.
Keefe
,
A. A.
,
Angel
,
H.
, and
Mangan
,
B.
,
2015
, “
2012 Canadian Forces Anthropometric Survey (CFAS)
,”
Defence Research and Development Canada
,
Ottawa, ON, Canada
.https://cradpdf.drdc-rddc.gc.ca/PDFS/unc328/p803174_A1b.pdf
22.
Statistics Canada
,
2022
,
Statistics of Women in the Canadian Armed Forces
,
Government of Canada
,
Ottawa, ON, Canada
.
23.
American College of Radiology (ACR), the Society for Pediatric Radiology (SPR) and the Society of Skeletal Radiology (SSR)
,
2023
, “
ACR-SPR-SSR Practice Parameter for the Performance of Quantitative Computed Tomography (QCT) Bone Mineral Density
,” Practice Parameter, Resolution 15 (Revised 2023).
24.
Acharya
,
I.
,
Van Tuyl
,
J. T.
,
de Lange
,
J.
, and
Quenneville
,
C. E.
,
2018
, “
A Force-Sensing Insole to Quantify Impact Loading to the Foot
,”
ASME J. Biomech. Eng.
,
141
(
2
), p.
024501
.10.1115/1.4041902
25.
ISO/TS 18506:2014(E)
,
2014
, “
Procedure to Construct Injury Risk Curves for the Evaluation of Road User Protection in Crash Tests
,”
I. O. f. Standardization
.
26.
Carpanen
,
D.
,
Kedgley
,
A. E.
,
Shah
,
D. S.
,
Edwards
,
D. S.
,
Plant
,
D. J.
, and
Masouros
,
S. D.
,
2019
, “
Injury Risk of Interphalangeal and Metacarpophalangeal Joints Under Impact Loading
,”
J. Mech. Behav. Biomed. Mater.
,
97
, pp.
306
311
.10.1016/j.jmbbm.2019.05.037
27.
Quenneville
,
C.
,
McLachlin
,
S.
,
Greeley
,
G.
, and
Dunning
,
C.
,
2011
, “
Injury Tolerance Criteria for Short-Duration Axial Impulse Loading of the Isolated Tibia
,”
J. Trauma
,
70
, pp.
13
18
.10.1097/TA.0b013e3181f6bb0e
28.
Lubahn
,
J.
,
Englund
,
R.
,
Trinidad
,
G.
,
Lyons
,
J.
,
Ivance
,
D.
, and
Buczek
,
F.
,
2005
, “
Adequacy of Laboratory Simulation of in-Line Skater Falls
,”
J. Hand Surg.
,
30
(
2
), pp.
283
288
.10.1016/j.jhsa.2004.11.016
29.
Steinmann
,
N.
,
2020
, “
Quantification of Loading for Behind Shield Blunt Impacts
,”
Master's thesis
,
McMaster University
,
Hamilton, ON
, Canada.https://macsphere.mcmaster.ca/bitstream/11375/26038/2/Steinmann_Noah_D_2020August.pdf
30.
Isa
,
M. I.
,
Fenton
,
T. W.
,
Goots
,
A. C.
,
Watson
,
E. O.
,
Vaughan
,
P. E.
, and
Wei
,
F.
,
2023
, “
Effects of Input Energy and Impactor Shape on Cranial Fracture Patterns
,”
Forensic Sci. Int.
,
352
, p.
111859
.10.1016/j.forsciint.2023.111859
31.
Weisenbach
,
C.
,
Logsdon
,
K.
,
Salzar
,
R.
,
Chancey
,
V.
, and
Brozoski
,
F.
,
2018
, “
Preliminary Investigation of Skull Fracture Patterns Using an Impactor Representative of Helmet Back-Face Deformation
,”
Military Med.
,
183
(
suppl_1
), pp.
287
293
.10.1093/milmed/usx210
32.
King
,
A.
,
Viano
,
D.
,
Mizeres
,
N.
, and
States
,
J.
,
1995
, “
Humanitarian Benefits of Cadaver Research on Injury Prevention
,”
J. Trauma-Inj. Infect., Crit. Care
,
38
(
4
), pp.
564
569
.10.1097/00005373-199504000-00016
33.
Crandall
,
J.
,
Bose
,
D.
,
Forman
,
J.
,
Untaroiu
,
C.
,
Arregui-Dalmases
,
C.
,
Shaw
,
C.
, and
Kerrigan
,
J.
,
2011
, “
Human Surrogates for Injury Biomechanics Research
,”
Clin. Anat.
,
24
(
3
), pp.
362
371
.10.1002/ca.21152
You do not currently have access to this content.