Abstract

Penn State University is developing a pediatric total artificial heart (TAH) as a bridge-to-transplant device that supports infants and small children with single ventricle anomalies or biventricular heart failure to address high waitlist mortality rates for pediatric patients with severe congenital heart disease (CHD). Two issues with mechanical circulatory support devices are thrombus formation and thromboembolic events. This in vitro study characterizes flow within Penn State's pediatric total artificial heart under physiological operating conditions. Particle image velocimetry (PIV) is used to quantify flow within the pump and to calculate wall shear rates (WSRs) along the internal pump surface to identify potential thrombogenic regions. Results show that the diastolic inflow jets produce sufficient wall shear rates to reduce thrombus deposition potential along the inlet side of the left and right pumps. The inlet jet transitions to rotational flow, which promotes wall washing along the apex of the pumps, prevents flow stasis, and aligns flow with the outlet valve prior to systolic ejection. However, inconsistent high wall shear rates near the pump apex cause increased thrombogenic potential. Strong systolic outflow jets produce high wall shear rates near the outlet valve to reduce thrombus deposition risk. The right pump, which has a modified outlet port angle to improve anatomical fit, produces lower wall shear rates and higher thrombus susceptibility potential (TSP) compared to the left pump. In summary, this study provides a fluid dynamic understanding of a new pediatric total artificial heart and indicates thrombus susceptibility is primarily confined to the apex, consistent with similar pulsatile heart pumps.

References

1.
Wu
,
W.
,
He
,
J.
, and
Shao
,
X.
,
2020
, “
Incidence and Mortality Trend of Congenital Heart Disease at the Global, Regional, and National Level, 1990–2017
,”
Medicine
,
99
(
23
), p.
e20593
.10.1097/MD.0000000000020593
2.
Reller
,
M. D.
,
Strickland
,
M. J.
,
Riehle-Colarusso
,
T.
,
Mahle
,
W. T.
, and
Correa
,
A.
,
2008
, “
Prevalence of Congenital Heart Defects in Metropolitan Atlanta, 1998–2005
,”
J. Pediatr.
,
153
(
6
), pp.
807
813
.10.1016/j.jpeds.2008.05.059
3.
Rohde
,
S.
,
Antonides
,
C. F. J.
,
Dalinghaus
,
M.
,
Muslem
,
R.
, and
Bogers
,
A. J. J. C.
,
2019
, “
Clinical Outcomes of Paediatric Patients Supported by the Berlin Heart EXCOR: A Systematic Review
,”
Eur. J. Cardio-Thorac. Surg.
,
56
(
5
), pp.
830
839
.10.1093/ejcts/ezz092
4.
Gerosa
,
G.
,
Scuri
,
S.
,
Iop
,
L.
, and
Torregrossa
,
G.
,
2014
, “
Present and Future Perspectives on Total Artificial Hearts
,”
Ann. Cardiothorac. Surg.
,
3
(
6
), pp.
595
602
.10.3978/j.issn.2225-319X.2014.09.05
5.
Copeland
,
J. G.
,
Smith
,
R. G. E. E.
,
Arabia
,
F. A.
,
Nolan
,
P. E.
,
Sethi
,
G. K.
,
Tsau
,
P. H.
,
Mcclellan
,
D.
, and
Slepian
,
M. J.
,
2004
, “
Cardiac Replacement With a Total Artificial Heart as a Bridge to Transplantation
,”
N. Engl. J. Med.
,
351
(
9
), pp.
859
867
.10.1056/NEJMoa040186
6.
Arabia
,
F.
,
Copeland
,
J.
,
Smith
,
R.
,
Banchy
,
M.
,
Foy
,
B.
,
Kormos
,
R.
,
Tector
,
A.
, et al.,
1999
, “
CardioWest Total Artificial Heart: A Retrospective Controlled Study
,”
Artif. Organs
,
23
(
2
), pp.
204
207
.10.1046/j.1525-1594.1999.06270.x
7.
Leprince
,
P.
,
Bonnet
,
N.
,
Varnous
,
S.
,
Rama
,
A.
,
Léger
,
P.
,
Ouattara
,
A.
,
Landi
,
M.
,
Szefner
,
J.
,
Gandjbakhch
,
I.
, and
Pavie
,
A.
,
2005
, “
Patients With a Body Surface Area Less Than 1.7 M2 Have a Good Outcome With the CardioWest Total Artificial Heart
,”
J. Heart Lung Transplant.
,
24
(
10
), pp.
1501
1505
.10.1016/j.healun.2005.01.016
8.
Spigel
,
Z. A.
,
Cho
,
J.
, and
Adachi
,
I.
,
2020
, “
Current Status of Pediatric Mechanical Circulatory Support
,”
Curr. Opin. Organ Transplant.
,
25
(
3
), pp.
231
236
.10.1097/MOT.0000000000000761
9.
Bearl
,
D. W.
,
2022
, “
The Importance of Mechanical Circulatory Support on Pediatric Waitlist and Post Heart Transplant Survival: A Narrative Review
,”
Pediatr. Med.
,
5
, pp.
25
25
.10.21037/pm-21-10
10.
Almond
,
C. S.
,
Morales
,
D. L.
,
Blackstone
,
E. H.
,
Turrentine
,
M. W.
,
Imamura
,
M.
,
Massicotte
,
M. P.
,
Jordan
,
L. C.
, et al.,
2013
, “
Berlin Heart EXCOR Pediatric Ventricular Assist Device for Bridge to Heart Transplantation in U.S. Children
,”
Circulation
,
127
(
16
), pp.
1702
1711
.10.1161/CIRCULATIONAHA.112.000685
11.
Hetzer
,
R.
,
Kaufmann
,
F.
, and
Walter
,
E. M. D.
,
2016
, “
Paediatric Mechanical Circulatory Support With Berlin Heart EXCOR: Development and Outcome of a 23-Year Experience
,”
Eur. J. Cardio-Thorac. Surg.
,
50
(
2
), pp.
203
210
.10.1093/ejcts/ezw011
12.
Arabía
,
F. A.
,
Cantor
,
R. S.
,
Koehl
,
D. A.
,
Kasirajan
,
V.
,
Gregoric
,
I.
,
Moriguchi
,
J. D.
,
Esmailian
,
F.
, et al.,
2018
, “
Interagency Registry for Mechanically Assisted Circulatory Support Report on the Total Artificial Heart
,”
J. Heart Lung Transplant.
,
37
(
11
), pp.
1304
1312
.10.1016/j.healun.2018.04.004
13.
Tuncer
,
O. N.
,
Kemaloğlu
,
C.
,
Erbasan
,
O.
,
Gölbaşı
,
İ.
,
Türkay
,
C.
, and
Bayezid
,
Ö.
,
2016
, “
Outcomes and Readmissions After Continuous Flow Left Ventricular Assist Device: Heartmate II Versus Heartware Ventricular Assist Device
,”
Transplant. Proc.
,
48
(
6
), pp.
2157
2161
.10.1016/j.transproceed.2016.03.056
14.
Navitsky
,
M. A.
,
Taylor
,
J. O.
,
Smith
,
A. B.
,
Slattery
,
M. J.
,
Deutsch
,
S.
,
Siedlecki
,
C. A.
, and
Manning
,
K. B.
,
2014
, “
Platelet Adhesion to Polyurethane Urea Under Pulsatile Flow Conditions
,”
Artif. Organs
,
38
(
12
), pp.
1046
1053
.10.1111/aor.12296
15.
Hubbell
,
J. A.
, and
Mcintire
,
L. V.
,
1986
, “
Visualization and Analysis of Mural Thrombogenesis on Collagen, Polyurethane and Nylon
,”
Biomaterials
,
7
(
5
), pp.
354
363
.10.1016/0142-9612(86)90006-2
16.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
,
2004
, “
Correlation of In Vivo Clot Deposition With the Flow Characteristics in the 50 Cc Penn State Artificial Heart: A Preliminary Study
,”
ASAIO J.
,
50
(
6
), pp.
537
542
.10.1097/01.MAT.0000145694.40637.A0
17.
Roszelle
,
B. N.
,
Fickes
,
M. G.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2011
, “
Flow Visualization of the Penn State Pulsatile Pediatric Ventricular Assist Device Cannulae and Change in Outlet Valve Placement
,”
Cardiovasc. Eng. Technol.
,
2
(
4
), pp.
244
252
.10.1007/s13239-011-0062-6
18.
Schönberger
,
M.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2012
, “
The Influence of Device Position on the Flow Within the Penn State 12 Cc Pediatric Ventricular Assist Device
,”
ASAIO J.
,
58
(
5
), pp.
481
493
.10.1097/MAT.0b013e3182639a18
19.
Cooper
,
B. T.
,
Roszelle
,
B. N.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2008
, “
The 12 Cc Penn State Pulsatile Pediatric Ventricular Assist Device: Fluid Dynamics Associated With Valve Selection
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
041019
.10.1115/1.2939342
20.
Gallagher
,
M. B.
,
2017
, “
A Study of the Effect of Hematocrit on Weaning in the 12 CC Penn State Pediatric Ventricular Assist Device
,” M.Sc. thesis,
The Pennsylvania State University
,
State College, PA
.https://etda.libraries.psu.edu/catalog/13983mzg5281
21.
Houtz
,
B.
,
2020
, “
A Study of the Effect of Hematocrit on an Elevated Beat Rate in the 12 CC Penn State Pediatric Ventricular Assist Device
,” M.Sc. thesis,
The Pennsylvania State University
,
State College, PA
.https://etda.libraries.psu.edu/catalog/17814blh5459
22.
Manning
,
K. B.
,
Wivholm
,
B. D.
,
Yang
,
N.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
,
2008
, “
Flow Behavior Within the 12-Cc Penn State Pulsatile Pediatric Ventricular Assist Device: An Experimental Study of the Initial Design
,”
Artif. Organs
,
32
(
6
), pp.
442
452
.10.1111/j.1525-1594.2008.00565.x
23.
Roszelle
,
B. N.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
A Parametric Study of Valve Orientation on the Flow Patterns of the Penn State Pulsatile Pediatric Ventricular Assist Device
,”
ASAIO J.
,
56
(
4
), pp.
356
363
.10.1097/MAT.0b013e3181e3cb22
24.
Roszelle
,
B. N.
,
Cooper
,
B. T.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2008
, “
The 12 Cc Penn State Pulsatile Pediatric Ventricular Assist Device: Flow Field Observations at a Reduced Beat Rate With Application to Weaning
,”
ASAIO J.
,
54
(
3
), pp.
325
331
.10.1097/MAT.0b013e3181695cfe
25.
Lukic
,
B.
,
Clark
,
J. B.
,
Izer
,
J. M.
,
Cooper
,
T. K.
,
Finicle
,
H. A.
,
Cysyk
,
J.
,
Doxtater
,
B.
, et al.,
2019
, “
Chronic Ovine Studies Demonstrate Low Thromboembolic Risk in the Penn State Infant Ventricular Assist Device
,”
ASAIO J.
,
65
(
4
), pp.
371
379
.10.1097/MAT.0000000000000945
26.
Roszelle
,
B. N.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
Flow Visualization of Three-Dimensionality Inside the 12 Cc Penn State Pulsatile Pediatric Ventricular Assist Device
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
439
455
.10.1007/s10439-009-9842-7
27.
Long
,
J. A.
,
Ündar
,
A.
,
Manning
,
K. B.
, and
Deutsch
,
S.
,
2005
, “
Viscoelasticity of Pediatric Blood and Its Implications for the Testing of a Pulsatile Pediatric Blood Pump
,”
ASAIO J.
,
51
(
5
), pp.
563
566
.10.1097/01.mat.0000180353.12963.f2
28.
Brookshier
,
K. A.
, and
Tarbell
,
J. M.
,
1993
, “
Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin
,”
Biorheology
,
30
(
2
), pp.
107
116
.10.3233/BIR-1993-30202
29.
Selinsky
,
P. D.
,
2022
, “
A Flow Study of the Effects of Outlet Valve Angle in the Right Side of the 12CC Penn State Pediatric Total Artificial Heart: A Thesis in Biomedical Engineering
,” M.Sc. thesis,
The Pennsylvania State University, State College, PA
.
30.
Hart
,
D. P.
,
2000
, “
Super-Resolution PIV by Recursive Local-Correlation
,”
J Visualization
,
3
(
2
), pp.
187
194
.10.1007/BF03182411
31.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry a Practical Guide
, 3rd ed.,
Springer
,
Cham, Switzerland
.
32.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
,
2004
, “
Wall Shear-Rate Estimation Within the 50 cc Penn State Artificial Heart Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
,
126
(
4
), pp.
430
437
.10.1115/1.1784477
33.
Topper
,
S. R.
,
Navitsky
,
M. A.
,
Medvitz
,
R. B.
,
Paterson
,
E. G.
,
Siedlecki
,
C. A.
,
Slattery
,
M. J.
,
Deutsch
,
S.
,
Rosenberg
,
G.
, and
Manning
,
K. B.
,
2014
, “
The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs
,”
Cardiovasc. Eng. Technol.
,
5
(
1
), pp.
54
69
.10.1007/s13239-014-0174-x
34.
Yamanaka
,
H.
,
Rosenberg
,
G.
,
Weiss
,
W. J.
,
Snyder
,
A. J.
,
Zapanta
,
C. M.
, and
Siedlecki
,
C. A.
,
2005
, “
Multiscale Analysis of Surface Thrombosis In Vivo in a Left Ventricular Assist System
,”
ASAIO J.
,
51
(
5
), pp.
567
577
.10.1097/01.mat.0000181707.06225.a0
35.
Deutsch
,
S.
,
Tarbell
,
J. M.
,
Manning
,
K. B.
,
Rosenberg
,
G.
, and
Fontaine
,
A. A.
,
2006
, “
Experimental Fluid Mechanics of Pulsatile Artificial Blood Pumps
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
65
86
.10.1146/annurev.fluid.38.050304.092022
36.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.10.1046/j.1525-1594.2003.07194.x
37.
Medvitz
,
R.
,
2008
, “
Development and Validation of a Computational Fluid Dynamic Methodology for Pulsatile Blood Pump Design and Prediction of Thrombus Potential
,”
Doctor of Philosophy, The Pennsylvania State University
,
State College, PA
.
38.
Balasubramanian
,
V.
, and
Slack
,
S. M.
,
2002
, “
The Effect of Fluid Shear and Co-Adsorbed Proteins the Stability of Immobilized Fibrinogen and Subsequent Platelet Interactions
,”
J. Biomater. Sci. Polym. Ed.
,
13
(
5
), pp.
543
561
.10.1163/15685620260178391
39.
Navitsky
,
M. A.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2013
, “
A Thrombus Susceptibility Comparison of Two Pulsatile Penn State 50 Cc Left Ventricular Assist Device Designs
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
4
16
.10.1007/s10439-012-0627-z
40.
Ponnaluri
,
S. V.
,
Houtz
,
B. L.
,
Raich
,
E. C.
,
Good
,
B. C.
,
Deutsch
,
S.
,
Weiss
,
W. J.
, and
Manning
,
K. B.
,
2023
, “
Effect of Hematocrit and Elevated Beat Rate on the 12 cc Penn State Pediatric Ventricular Assist Device
,”
ASAIO J.
,
69
(
12
), pp.
1065
1073
.10.1097/MAT.0000000000002028
41.
Sonntag
,
S. J.
,
Kaufmann
,
T. A. S.
,
Büsen
,
M. R.
,
Laumen
,
M.
,
Gräf
,
F.
,
Linde
,
T.
, and
Steinseifer
,
U.
,
2014
, “
Numerical Washout Study of a Pulsatile Total Artificial Heart
,”
Int. J. Artif. Organs
,
37
(
3
), pp.
241
252
.10.5301/ijao.5000306
42.
Brockhaus
,
M. K.
,
Behbahani
,
M. J.
,
Muris
,
F.
,
Jansen
,
S. V.
,
Schmitz‐Rode
,
T.
,
Steinseifer
,
U.
, and
Clauser
,
J. C.
,
2021
, “
In Vitro Thrombogenicity Testing of Pulsatile Mechanical Circulatory Support Systems: Design and Proof‐of‐Concept
,”
Artif. Organs
,
45
(
12
), pp.
1513
1521
.10.1111/aor.14046
43.
Fleming
,
S.
,
Thompson
,
M.
,
Stevens
,
R.
,
Heneghan
,
C.
,
Plüddemann
,
A.
,
Maconochie
,
I.
,
Tarassenko
,
L.
, and
Mant
,
D.
,
2011
, “
Normal Ranges of Heart Rate and Respiratory Rate in Children From Birth to 18 Years of Age: A Systematic Review of Observational Studies
,”
Lancet
,
377
(
9770
), pp.
1011
1018
.10.1016/S0140-6736(10)62226-X
You do not currently have access to this content.