Abstract

Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs: HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.

References

1.
World Health Organization,
2021
, “
Cardiovascular Diseases
,”
World Health Organization
,
Geneva, Switzerland
, accessed May 6, 2024, https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
2.
Ponikowski
,
P.
,
Anker
,
S. D.
,
AlHabib
,
K. F.
,
Cowie
,
M. R.
,
Force
,
T. L.
,
Hu
,
S.
,
Jaarsma
,
T.
,
Krum
,
H.
,
Rastogi
,
V.
,
Rohde
,
L. E.
,
Samal
,
U. C.
,
Shimokawa
,
H.
,
Budi Siswanto
,
B.
,
Sliwa
,
K.
, and
Filippatos
,
G.
,
2014
, “
Heart Failure: Preventing Disease and Death Worldwide
,”
ESC Hear. Fail.
,
1
(
1
), pp.
4
25
.10.1002/ehf2.12005
3.
Timms
,
D.
,
2011
, “
A Review of Clinical Ventricular Assist Devices
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1041
1047
.10.1016/j.medengphy.2011.04.010
4.
Chen
,
Z.
,
Jena
,
S. K.
,
Giridharan
,
G. A.
,
Sobieski
,
M. A.
,
Koenig
,
S. C.
,
Slaughter
,
M. S.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2019
, “
Shear Stress and Blood Trauma Under Constant and Pulse-Modulated Speed CF-VAD Operations: CFD Analysis of the HVAD
,”
Med. Biol. Eng. Comput.
,
57
(
4
), pp.
807
818
.10.1007/s11517-018-1922-0
5.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), pp.
1
11
.10.1115/1.4007092
6.
Crow
,
S.
,
John
,
R.
,
Boyle
,
A.
,
Shumway
,
S.
,
Liao
,
K.
,
Colvin-Adams
,
M.
,
Toninato
,
C.
,
Missov
,
E.
,
Pritzker
,
M.
,
Martin
,
C.
,
Garry
,
D.
,
Thomas
,
W.
, and
Joyce
,
L.
,
2009
, “
Gastrointestinal Bleeding Rates in Recipients of Nonpulsatile and Pulsatile Left Ventricular Assist Devices
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
208
215
.10.1016/j.jtcvs.2008.07.032
7.
Pak
,
S. W.
,
Uriel
,
N.
,
Takayama
,
H.
,
Cappleman
,
S.
,
Song
,
R.
,
Colombo
,
P. C.
,
Charles
,
S.
,
Mancini
,
D.
,
Gillam
,
L.
,
Naka
,
Y.
, and
Jorde
,
U. P.
,
2010
, “
Prevalence of de Novo Aortic Insufficiency During Long-Term Support With Left Ventricular Assist Devices
,”
J. Hear. Lung Transplant
,
29
(
10
), pp.
1172
1176
.10.1016/j.healun.2010.05.018
8.
Wang
,
Y.
,
Shen
,
P.
,
Zheng
,
M.
,
Fu
,
P.
,
Liu
,
L.
,
Wang
,
J.
, and
Yuan
,
L.
,
2019
, “
Influence of Impeller Speed Patterns on Hemodynamic Characteristics and Hemolysis of the Blood Pump
,”
Appl. Sci.
,
9
(
21
), p.
4689
.10.3390/app9214689
9.
Wiegmann
,
L.
,
Thamsen
,
B.
,
de Zélicourt
,
D.
,
Granegger
,
M.
,
Boës
,
S.
,
Schmid Daners
,
M.
,
Meboldt
,
M.
, and
Kurtcuoglu
,
V.
,
2019
, “
Fluid Dynamics in the HeartMate 3: Influence of the Artificial Pulse Feature and Residual Cardiac Pulsation
,”
Artif. Organs
,
43
(
4
), pp.
363
376
.10.1111/aor.13346
10.
Gross-Hardt
,
S.
,
Boehning
,
F.
,
Steinseifer
,
U.
,
Schmitz-Rode
,
T.
, and
Kaufmann
,
T. A. S.
,
2019
, “
Mesh Sensitivity Analysis for Quantitative Shear Stress Assessment in Blood Pumps Using Computational Fluid Dynamics
,”
ASME J. Biomech. Eng.
,
141
(
2
), p.
021012
.10.1115/1.4042043
11.
Berg
,
N.
,
Fuchs
,
L.
, and
Prahl Wittberg
,
L.
,
2019
, “
Flow Characteristics and Coherent Structures in a Centrifugal Blood Pump, Flow
,”
Turbul. Combust.
,
102
(
2
), pp.
469
483
.10.1007/s10494-018-9994-3
12.
Torner
,
B.
,
Konnigk
,
L.
,
Hallier
,
S.
,
Kumar
,
J.
,
Witte
,
M.
, and
Wurm
,
F. H.
,
2018
, “
Large Eddy Simulation in a Rotary Blood Pump: Viscous Shear Stress Computation and Comparison With Unsteady Reynolds-Averaged Navier-Stokes Simulation
,”
Int. J. Artif. Organs
,
41
(
11
), pp.
752
763
.10.1177/0391398818777697
13.
Gross-Hardt
,
S. H.
,
Sonntag
,
S. J.
,
Boehning
,
F.
,
Steinseifer
,
U.
,
Schmitz-Rode
,
T.
, and
Kaufmann
,
T. A. S.
,
2019
, “
Crucial Aspects for Using Computational Fluid Dynamics as a Predictive Evaluation Tool for Blood Pumps
,”
ASAIO J
,
65
(
8
), pp.
864
873
.10.1097/MAT.0000000000001023
14.
Drešar
,
P.
,
Rutten
,
M. C. M.
,
Gregorič
,
I. D.
, and
Duhovnik
,
J.
,
2018
, “
A Numerical Simulation of heartassist5 Blood Pump Using an Advanced Turbulence Model
,”
ASAIO J
,
64
(
5
), pp.
673
679
.10.1097/MAT.0000000000000703
15.
Gil
,
A.
,
García-Tíscar
,
J.
,
Quintero
,
P.
, and
Mares
,
A.
,
2023
, “
Influence of Turbulence Modeling on the Simulation of Miniaturized Levitating Centrifugal Pumps for Cardiac Assistance
,”
ASME
Paper No. GT2023-101412.10.1115/GT2023-101412
16.
Kumar
,
J.
,
Elhassan
,
A.
,
Dimitrova
,
G.
, and
Essandoh
,
M.
,
2019
, “
The Lavare Cycle: A Novel Pulsatile Feature of the HVAD Continuous-Flow Left Ventricular Assist Device
,”
J. Cardiothorac. Vasc. Anesth.
,
33
(
4
), pp.
1170
1171
.10.1053/j.jvca.2018.11.029
17.
Siemens, CD-Adapco Simcenter STAR-CCM+ release version 17.06.007, Tutorial and Theory Guide, Siemens, Munich, Germany
.
18.
Pope
,
S. B.
,
2001
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.10.1017/S0022112000212913
19.
Carreau
,
P. J.
,
1972
, “
Rheological Equations From Molecular Network Theories
,”
Trans. Soc. Rheol.
,
16
(
1
), pp.
99
127
.10.1122/1.549276
20.
Al-Azawy
,
M. G.
,
Kadhim
,
S. K.
, and
Hameed
,
A. S.
,
2020
, “
Newtonian and Non-Newtonian Blood Rheology Inside a Model of Stenosis
,”
CFD Lett.
,
12
(
11
), pp.
27
36
.10.37934/cfdl.12.11.2736
21.
Bessonov
,
N.
,
Sequeira
,
A.
,
Simakov
,
S.
,
Vassilevskii
,
Y.
, and
Volpert
,
V.
,
2016
, “
Methods of Blood Flow Modelling
,”
Math. Model. Nat. Phenom.
,
11
(
1
), pp.
1
25
.10.1051/mmnp/201611101
22.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
, pp.
183
200
.10.1023/A:1009995426001
23.
Granegger
,
M.
,
Thamsen
,
B.
,
Schlöglhofer
,
T.
,
Lach
,
S.
,
Escher
,
A.
,
Haas
,
T.
,
Meboldt
,
M.
,
Schweiger
,
M.
,
Hübler
,
M.
, and
Zimpfer
,
D.
,
2020
, “
Blood Trauma Potential of the HeartWare Ventricular Assist Device in Pediatric Patients
,”
J. Thorac. Cardiovasc. Surg.
,
159
(
4
), pp.
1519
1527
.10.1016/j.jtcvs.2019.06.084
24.
Gil
,
A.
,
Navarro
,
R.
,
Quintero
,
P.
, and
Mares
,
A.
,
2023
, “
Hemocompatibility and Hemodynamic Comparison of Two Centrifugal LVADs: HVAD and HeartMate3
,”
Biomech. Model. Mechanobiol.
,
22
(
3
), pp.
871
883
.10.1007/s10237-022-01686-y
25.
Thamsen
,
B.
,
Gülan
,
U.
,
Wiegmann
,
L.
,
Loosli
,
C.
,
Schmid Daners
,
M.
,
Kurtcuoglu
,
V.
,
Holzner
,
M.
, and
Meboldt
,
M.
,
2020
, “
Assessment of the Flow Field in the HeartMate 3 Using Three-Dimensional Particle Tracking Velocimetry and Comparison to Computational Fluid Dynamics
,”
Asaio J
,
66
(
2
), pp.
173
182
.10.1097/MAT.0000000000000987
26.
Catanho
,
M.
,
Sinha
,
M.
, and
Vijayan
,
V.
,
2012
, “
Model of Aortic Blood Flow Using the Windkessel Effect
,”
Integrated Systems Neuroengineering
,
San Diego, CA
, accessed May 6, 2024, https://isn.ucsd.edu/courses/beng221/problems/2012/BENG221_Project%20-%20Catanho%20Sinha%20Vijayan.pdf
27.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
Asaio J
,
58
(
4
), pp.
363
372
.10.1097/MAT.0b013e318254833b
28.
Faghih
,
M. M.
, and
Keith Sharp
,
M.
,
2016
, “
Extending the Power-Law Hemolysis Model to Complex Flows
,”
ASME J. Biomech. Eng.
,
138
(
12
), p.
124504
.10.1115/1.4034786
29.
Garon
,
A.
, and
Farinas
,
M. I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.10.1111/j.1525-1594.2004.00026.x
30.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses - In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.10.1177/039139889001300507
31.
Craven
,
B. A.
,
Aycock
,
K. I.
,
Herbertson
,
L. H.
, and
Malinauskas
,
R. A.
,
2019
, “
A CFD-Based Kriging Surrogate Modeling Approach for Predicting Device-Specific Hemolysis Power Law Coefficients in Blood-Contacting Medical Devices
,”
Biomech. Model. Mechanobiol.
,
18
(
4
), pp.
1005
1030
.10.1007/s10237-019-01126-4
32.
Gil
,
A.
,
Navarro
,
R.
,
Quintero
,
P.
,
Mares
,
A.
,
Pérez
,
M.
, and
Montero
,
J. A.
,
2022
, “
CFD Analysis of the HVAD's Hemodynamic Performance and Blood Damage With Insight Into Gap Clearance
,”
Biomech. Model. Mechanobiol.
,
21
(
4
), pp.
1201
1215
.10.1007/s10237-022-01585-2
33.
Spiegel
,
M.
,
Redel
,
T.
,
Zhang
,
J. J.
,
Struffert
,
T.
,
Hornegger
,
J.
,
Grossman
,
R. G.
,
Doerfler
,
A.
, and
Karmonik
,
C.
,
2011
, “
Tetrahedral vs. polyhedral Mesh Size Evaluation on Flow Velocity and Wall Shear Stress for Cerebral Hemodynamic Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
1
), pp.
9
22
.10.1080/10255842.2010.518565
34.
Karimi
,
M. S.
,
Razzaghi
,
P.
,
Raisee
,
M.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2021
, “
Stochastic Simulation of the FDA Centrifugal Blood Pump Benchmark
,”
Biomech. Model. Mechanobiol.
,
20
(
5
), pp.
1871
1887
.10.1007/s10237-021-01482-0
35.
Thamsen
,
B.
,
Blümel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.10.1111/aor.12542
36.
Zhang
,
J.
,
Chen
,
Z.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2020
, “
Computational Characterization of Flow and Blood Damage Potential of the New Maglev CH-VAD Pump Versus the HVAD and HeartMate II Pumps
,”
Int. J. Artif. Organs
,
43
(
10
), pp.
653
662
.10.1177/0391398820903734
37.
Li
,
Y.
,
Wang
,
H.
,
Xi
,
Y.
,
Sun
,
A.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2022
, “
Multi-Indicator Analysis of Mechanical Blood Damage With Five Clinical Ventricular Assist Devices
,”
Comput. Biol. Med.
,
151
, p.
106271
.10.1016/j.compbiomed.2022.106271
38.
Ray
,
P. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2022
, “
Numerical Assessment of Hemodynamic Perspectives of a Left Ventricular Assist Device and Subsequent Proposal for Improvisation
,”
Comput. Biol. Med.
,
151
, p.
106309
.10.1016/j.compbiomed.2022.106309
39.
Florisson
,
D. S.
,
Conte
,
S. M.
,
De Bono
,
J. A.
, and
Newcomb
,
A. E.
,
2019
, “
Do Patients With the Centrifugal Flow HeartMate 3 or HeartWare Left Ventricular Assist Device Have Better Outcomes Compared to Those With Axial Flow HeartMate II?
,”
Interact. Cardiovasc. Thorac. Surg.
,
29
(
6
), pp.
844
851
.10.1093/icvts/ivz202
You do not currently have access to this content.