Abstract

Ischemic mitral regurgitation (IMR) occurs from incomplete coaptation of the mitral valve (MV) after myocardial infarction (MI), typically worsened by continued remodeling of the left ventricular (LV). The importance of LV remodeling is clear as IMR is induced by the post-MI dual mechanisms of mitral annular dilation and leaflet tethering from papillary muscle (PM) distension via the MV chordae tendineae (MVCT). However, the detailed etiology of IMR remains poorly understood, in large part due to the complex interactions of the MV and the post-MI LV remodeling processes. Given the patient-specific anatomical complexities of the IMR disease processes, simulation-based approaches represent an ideal approach to improve our understanding of this deadly disease. However, development of patient-specific models of left ventricle–mitral valve (LV–MV) interactions in IMR are complicated by the substantial variability and complexity of the MR etiology itself, making it difficult to extract underlying mechanisms from clinical data alone. To address these shortcomings, we developed a detailed ovine LV-MV finite element (FE) model based on extant comprehensive ovine experimental data. First, an extant ovine LV FE model (Sci. Rep. 2021 Jun 29;11(1):13466) was extended to incorporate the MV using a high fidelity ovine in vivo derived MV leaflet geometry. As it is not currently possible to image the MVCT in vivo, a functionally equivalent MVCT network was developed to create the final LV-MV model. Interestingly, in pilot studies, the MV leaflet strains did not agree well with known in vivo MV leaflet strain fields. We then incorporated previously reported MV leaflet prestrains (J. Biomech. Eng. 2023 Nov 1;145(11):111002) in the simulations. The resulting LV-MV model produced excellent agreement with the known in vivo ovine MV leaflet strains and deformed shapes in the normal state. We then simulated the effects of regional acute infarctions of varying sizes and anatomical locations by shutting down the local myocardial contractility. The remaining healthy (noninfarcted) myocardium mechanical behaviors were maintained, but allowed to adjust their active contractile patterns to maintain the prescribed pressure–volume loop behaviors in the acute post-MI state. For all cases studied, the LV-MV simulation demonstrated excellent agreement with known LV and MV in vivo strains and MV regurgitation orifice areas. Infarct location was shown to play a critical role in resultant MV leaflet strain fields. Specifically, extensional deformations of the posterior leaflets occurred in the posterobasal and laterobasal infarcts, while compressive deformations of the anterior leaflet were observed in the anterobasal infarct. Moreover, the simulated posterobasal infarct induced the largest MV regurgitation orifice area, consistent with experimental observations. The present study is the first detailed LV-MV simulation that reveals the important role of MV leaflet prestrain and functionally equivalent MVCT for accurate predictions of LV–MV interactions. Importantly, the current study further underscored simulation-based methods in understanding MV function as an integral part of the LV.

References

1.
Atluri
,
P.
,
Hiesinger
,
W.
,
Gorman
,
R. C.
,
Pochettino
,
A.
,
Jessup
,
M.
,
Acker
,
M. A.
,
Morris
,
R. J.
, and
Woo
,
Y. J.
,
2008
, “
Cardiac Retransplantation is an Efficacious Therapy for Primary Cardiac Allograft Failure
,”
J. Cardiothorac. Surg.
,
3
(
1
), p.
26
.10.1186/1749-8090-3-26
2.
Trichon
,
B. H.
,
Felker
,
G. M.
,
Shaw
,
L. K.
,
Cabell
,
C. H.
, and
O'Connor
,
C. M.
,
2003
, “
Relation of Frequency and Severity of Mitral Regurgitation to Survival Among Patients With Left Ventricular Systolic Dysfunction and Heart Failure
,”
Am. J. Cardiol.
,
91
(
5
), pp.
538
543
.10.1016/S0002-9149(02)03301-5
3.
Borger
,
M. A.
,
Alam
,
A.
,
Murphy
,
P. M.
,
Doenst
,
T.
, and
David
,
T. E.
,
2006
, “
Chronic Ischemic Mitral Regurgitation: Repair, Replace or Rethink?
,”
Ann. Thorac. Surg.
,
81
(
3
), pp.
1153
1161
.10.1016/j.athoracsur.2005.08.080
4.
Grigioni
,
F.
,
Enriquez-Sarano
,
M.
,
Zehr
,
K. J.
,
Bailey
,
K. R.
, and
Tajik
,
A. J.
,
2001
, “
Ischemic Mitral Regurgitation: Long-Term Outcome and Prognostic Implications With Quantitative Doppler Assessment
,”
Circulation
,
103
(
13
), pp.
1759
1764
.10.1161/01.CIR.103.13.1759
5.
Lamas
,
G. A.
,
Mitchell
,
G. F.
,
Flaker
,
G. C.
,
Smith
,
S. C.
, Jr.
,
Gersh
,
B. J.
,
Basta
,
L.
,
Moye
,
L.
,
Braunwald
,
E.
, and
Pfeffer
,
M. A.
,
1997
, “
Clinical Significance of Mitral Regurgitation After Acute Myocardial Infarction
,”
Circulation
,
96
(
3
), pp.
827
833
.10.1161/01.CIR.96.3.827
6.
Hung
,
J.
,
Papakostas
,
L.
,
Tahta
,
S. A.
,
Hardy
,
B. G.
,
Bollen
,
B. A.
,
Duran
,
C. M.
, and
Levine
,
R. A.
,
2004
, “
Mechanism of Recurrent Ischemic Mitral Regurgitation After Annuloplasty: Continued lv Remodeling as a Moving Target
,”
Circulation
,
110
(
11_suppl_1
), pp.
II-85
II-90
.10.1161/01.CIR.0000138192.65015.45
7.
McGee
,
E. C.
, Jr.
,
Gillinov
,
A. M.
,
Blackstone
,
E. H.
,
Rajeswaran
,
J.
,
Cohen
,
G.
,
Najam
,
F.
,
Shiota
,
T.
, et al.,
2004
, “
Recurrent Mitral Regurgitation After Annuloplasty for Functional Ischemic Mitral Regurgitation
,”
J. Thorac. Cardiovasc. Surg.
,
128
(
6
), pp.
916
924
.10.1016/j.jtcvs.2004.07.037
8.
Jackson
,
B. M.
,
Parish
,
L. M.
,
Gorman
,
J. H.
, III
,
Enomoto
,
Y.
,
Sakamoto
,
H.
,
Plappert
,
T.
,
St. John Sutton
,
M. G.
,
Salgo
,
I.
, and
Gorman
,
R. C.
,
2005
, “
Borderzone Geometry After Acute Myocardial Infarction: A Three-Dimensional Contrast Enhanced Echocardiographic Study
,”
Ann. Thorac. Surg.
,
80
(
6
), pp.
2250
2255
.10.1016/j.athoracsur.2005.05.103
9.
Jackson
,
B. M.
,
Gorman
,
J. H.
, III
,
Salgo
,
I. S.
,
Moainie
,
S. L.
,
Plappert
,
T.
,
St. John-Sutton
,
M.
,
Edmunds
,
L. H.
, Jr.
, and
Gorman
,
R. C.
,
2003
, “
Border Zone Geometry Increases Wall Stress After Myocardial Infarction: Contrast Echocardiographic Assessment
,”
Am. J. Physiol. Heart Circ. Physiol.
,
284
(
2
), pp.
H475
H479
.10.1152/ajpheart.00360.2002
10.
Sun
,
Y.
,
Zhang
,
J. Q.
,
Zhang
,
J.
, and
Lamparter
,
S.
,
2000
, “
Cardiac Remodeling by Fibrous Tissue After Infarction in Rats
,”
J. Lab. Clin. Med.
,
135
(
4
), pp.
316
323
.10.1067/mlc.2000.105971
11.
Pilla
,
J. J.
,
Blom
,
A. S.
,
Gorman
,
J. H.
, 3rd
,
Brockman
,
D. J.
,
Affuso
,
J.
,
Parish
,
L. M.
,
Sakamoto
,
H.
,
Jackson
,
B. M.
,
Acker
,
M. A.
, and
Gorman
,
R. C.
,
2005
, “
Early Postinfarction Ventricular Restraint Improves Borderzone Wall Thickening Dynamics During Remodeling
,”
Ann. Thorac. Surg.
,
80
(
6
), pp.
2257
2262
.10.1016/j.athoracsur.2005.05.089
12.
Fomovsky
,
G. M.
, and
Holmes
,
J. W.
,
2010
, “
Evolution of Scar Structure, Mechanics, and Ventricular Function After Myocardial Infarction in the Rat
,”
Am. J. Physiol. Heart Circul. Physiol.
,
298
(
1
), pp.
H221
H228
.10.1152/ajpheart.00495.2009
13.
Jackson
,
B. M.
,
Gorman
,
J. H.
,
Moainie
,
S. L.
,
Guy
,
T. S.
,
Narula
,
N.
,
Narula
,
J.
,
John-Sutton
,
M. G.
,
Edmunds
,
L. H.
, Jr.
, and
Gorman
,
R. C.
,
2002
, “
Extension of Borderzone Myocardium in Postinfarction Dilated Cardiomyopathy
,”
J. Am. Coll. Cardiol.
,
40
(
6
), pp.
1160
1167
.10.1016/S0735-1097(02)02121-6
14.
Fomovsky
,
G. M.
,
Thomopoulos
,
S.
, and
Holmes
,
J. W.
,
2010
, “
Contribution of Extracellular Matrix to the Mechanical Properties of the Heart
,”
J. Mol. Cell Cardiol.
,
48
(
3
), pp.
490
496
.10.1016/j.yjmcc.2009.08.003
15.
Holmes
,
J. W.
,
Nunez
,
J. A.
, and
Covell
,
J. W.
,
1997
, “
Functional Implications of Myocardial Scar Structure
,”
Am. J. Physiol.
,
272
(
5
), pp.
H2123
H2130
.10.1152/ajpheart.1997.272.5.H2123
16.
Fomovsky
,
G. M.
,
Rouillard
,
A. D.
, and
Holmes
,
J. W.
,
2012
, “
Regional Mechanics Determine Collagen Fiber Structure in Healing Myocardial Infarcts
,”
J. Mol. Cell Cardiol.
,
52
(
5
), pp.
1083
1090
.10.1016/j.yjmcc.2012.02.012
17.
Driesbaugh
,
K. H.
,
Branchetti
,
E.
,
Grau
,
J. B.
,
Keeney
,
S. J.
,
Glass
,
K.
,
Oyama
,
M. A.
,
Rioux
,
N.
, et al.,
2018
, “
Serotonin Receptor 2B Signaling With Interstitial Cell Activation and Leaflet Remodeling in Degenerative Mitral Regurgitation
,”
J. Mol. Cell. Cardiol.
,
115
(
2017
), pp.
94
103
.10.1016/j.yjmcc.2017.12.014
18.
Ayoub
,
S.
,
Lee
,
C.-H.
,
Driesbaugh
,
K. H.
,
Anselmo
,
W.
,
Hughes
,
C. T.
,
Ferrari
,
G.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2017
, “
Regulation of Valve Interstitial Cell Homeostasis by Mechanical Deformation: Implications for Heart Valve Disease and Surgical Repair
,”
J. R. Soc., Interface
,
14
(
135
), p.
20170580
.10.1098/rsif.2017.0580
19.
Ayoub
,
S.
,
Howsmon
,
D. P.
,
Lee
,
C.-H.
, and
Sacks
,
M. S.
,
2021
, “
On the Role of Predicted In Vivo Mitral Valve Interstitial Cell Deformation on Its Biosynthetic Behavior
,”
Biomech. Model. Mechanobiol.
,
20
(
1
), pp.
135
144
.10.1007/s10237-020-01373-w
20.
Howsmon
,
D. P.
,
Rego
,
B. V.
,
Castillero
,
E.
,
Ayoub
,
S.
,
Khalighi
,
A. H.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
,
Ferrari
,
G.
, and
Sacks
,
M. S.
,
2020
, “
Mitral Valve Leaflet Response to Ischaemic Mitral Regurgitation: From Gene Expression to Tissue Remodelling
,”
J. R. Soc. Interface
,
17
(
166
), p.
20200098
.10.1098/rsif.2020.0098
21.
Jimenez
,
J. H.
,
Liou
,
S. W.
,
Padala
,
M.
,
He
,
Z.
,
Sacks
,
M.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, 3rd
, and
Yoganathan
,
A. P.
,
2007
, “
A Saddle-Shaped Annulus Reduces Systolic Strain on the Central Region of the Mitral Valve Anterior Leaflet
,”
J. Thorac. Cardiovasc. Surg.
,
134
(
6
), pp.
1562
1568
.10.1016/j.jtcvs.2007.08.037
22.
Padala
,
M.
,
Hutchison
,
R. A.
,
Croft
,
L. R.
,
Jimenez
,
J. H.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, 3rd
,
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2009
, “
Saddle Shape of the Mitral Annulus Reduces Systolic Strains on the P2 Segment of the Posterior Mitral Leaflet
,”
Ann. Thorac. Surg.
,
88
(
5
), pp.
1499
1504
.10.1016/j.athoracsur.2009.06.042
23.
Gorman
,
R. C.
,
McCaughan
,
J. S.
,
Ratcliffe
,
M. B.
,
Gupta
,
K. B.
,
Streicher
,
J. T.
,
Ferrari
,
V. A.
,
John-Sutton
,
M. G. S.
,
Bogen
,
D. K.
, and
Edmunds
,
L. H.
, Jr.
,
1995
, “
Pathogenesis of Acute Ischemic Mitral Regurgitation in Three Dimensions
,”
J. Thorac. Cardiovasc. Surg.
,
109
(
4
), pp.
684
693
.10.1016/S0022-5223(95)70349-7
24.
Enomoto
,
Y.
,
Gorman
,
J. H.
, III
,
Moainie
,
S. L.
,
Guy
,
T. S.
,
Jackson
,
B. M.
,
Parish
,
L. M.
,
Plappert
,
T.
,
Zeeshan
,
A.
,
John-Sutton
,
M. G. S.
, and
Gorman
,
R. C.
,
2005
, “
Surgical Treatment of Ischemic Mitral Regurgitation Might Not Influence Ventricular Remodeling
,”
J. Thorac. Cardiovasc. Surg.
,
129
(
3
), pp.
504
511
.10.1016/j.jtcvs.2004.09.035
25.
Ferrini
,
A.
,
Stevens
,
M. M.
,
Sattler
,
S.
, and
Rosenthal
,
N.
,
2019
, “
Toward Regeneration of the Heart: Bioengineering Strategies for Immunomodulation
,”
Front. Cardiovasc. Med.
,
6
, p.
26
.10.3389/fcvm.2019.00026
26.
Jordan
,
J. E.
,
Zhao
,
Z.-Q.
, and
Vinten-Johansen
,
J.
,
1999
, “
The Role of Neutrophils in Myocardial Ischemia–Reperfusion Injury
,”
Cardiovasc. Res.
,
43
(
4
), pp.
860
878
.10.1016/S0008-6363(99)00187-X
27.
Prabhu
,
S. D.
, and
Frangogiannis
,
N. G.
,
2016
, “
The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis
,”
Circ. Res.
,
119
(
1
), pp.
91
112
.10.1161/CIRCRESAHA.116.303577
28.
Zhuan
,
X.
,
Luo
,
X.
,
Gao
,
H.
, and
Ogden
,
R. W.
,
2019
, “
Coupled Agent-Based and Hyperelastic Modelling of the Left Ventricle Post-Myocardial Infarction
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
1
), p.
e3155
.10.1002/cnm.3155
29.
Wenk
,
J. F.
,
Sun
,
K.
,
Zhang
,
Z.
,
Soleimani
,
M.
,
Ge
,
L.
,
Saloner
,
D.
,
Wallace
,
A. W.
,
Ratcliffe
,
M. B.
, and
Guccione
,
J. M.
,
2011
, “
Regional Left Ventricular Myocardial Contractility and Stress in a Finite Element Model of Posterobasal Myocardial Infarction
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
044501
.10.1115/1.4003438
30.
Mojsejenko
,
D.
,
McGarvey
,
J. R.
,
Dorsey
,
S. M.
,
Gorman
,
J. H.
,
Burdick
,
J. A.
,
Pilla
,
J. J.
,
Gorman
,
R. C.
, and
Wenk
,
J. F.
,
2015
, “
Estimating Passive Mechanical Properties in a Myocardial Infarction Using Mri and Finite Element Simulations
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
633
647
.10.1007/s10237-014-0627-z
31.
Lee
,
L. C.
,
Sundnes
,
J.
,
Genet
,
M.
,
Wenk
,
J. F.
, and
Wall
,
S. T.
,
2016
, “
An Integrated Electromechanical-Growth Heart Model for Simulating Cardiac Therapies
,”
Biomech. Model. Mechanobiol.
,
15
(
4
), pp.
791
803
.10.1007/s10237-015-0723-8
32.
Pilla
,
J. J.
,
Gorman
,
J. H.
, III
, and
Gorman
,
R. C.
,
2009
, “
Theoretic Impact of Infarct Compliance on Left Ventricular Function
,”
Ann. Thorac. Surg.
,
87
(
3
), pp.
803
810
.10.1016/j.athoracsur.2008.11.044
33.
Wenk
,
J. F.
,
Zhang
,
Z.
,
Cheng
,
G.
,
Malhotra
,
D.
,
Acevedo-Bolton
,
G.
,
Burger
,
M.
,
Suzuki
,
T.
, et al.,
2010
, “
First Finite Element Model of the Left Ventricle With Mitral Valve: Insights Into Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
89
(
5
), pp.
1546
1553
.10.1016/j.athoracsur.2010.02.036
34.
Wong
,
V. M.
,
Wenk
,
J. F.
,
Zhang
,
Z.
,
Cheng
,
G.
,
Acevedo-Bolton
,
G.
,
Burger
,
M.
,
Saloner
,
D. A.
, et al.,
2012
, “
The Effect of Mitral Annuloplasty Shape in Ischemic Mitral Regurgitation: A Finite Element Simulation
,”
Ann. Thorac. Surg.
,
93
(
3
), pp.
776
782
.10.1016/j.athoracsur.2011.08.080
35.
Zhang
,
Y.
,
Wang
,
V. Y.
,
Morgan
,
A. E.
,
Kim
,
J.
,
Handschumacher
,
M. D.
,
Moskowitz
,
C. S.
,
Levine
,
R. A.
, et al.,
2019
, “
Mechanical Effects of Mitraclip on Leaflet Stress and Myocardial Strain in Functional Mitral Regurgitation–a Finite Element Modeling Study
,”
PloS One
,
14
(
10
), p.
e0223472
.10.1371/journal.pone.0223472
36.
Baillargeon
,
B.
,
Rebelo
,
N.
,
Fox
,
D. D.
,
Taylor
,
R. L.
, and
Kuhl
,
E.
,
2014
, “
The Living Heart Project: A Robust and Integrative Simulator for Human Heart Function
,”
Eur. J. Mech.-A/Solids
,
48
, pp.
38
47
.10.1016/j.euromechsol.2014.04.001
37.
Baillargeon
,
B.
,
Costa
,
I.
,
Leach
,
J. R.
,
Lee
,
L. C.
,
Genet
,
M.
,
Toutain
,
A.
,
Wenk
,
J. F.
, et al.,
2015
, “
Human Cardiac Function Simulator for the Optimal Design of a Novel Annuloplasty Ring With a Sub-Valvular Element for Correction of Ischemic Mitral Regurgitation
,”
Cardiovasc. Eng. Technol.
,
6
(
2
), pp.
105
116
.10.1007/s13239-015-0216-z
38.
Gao
,
H.
,
Feng
,
L.
,
Qi
,
N.
,
Berry
,
C.
,
Griffith
,
B. E.
, and
Luo
,
X.
,
2017
, “
A Coupled Mitral Valve–Left Ventricle Model With Fluid–Structure Interaction
,”
Med. Eng. Phys.
,
47
, pp.
128
136
.10.1016/j.medengphy.2017.06.042
39.
Soares
,
J. S.
,
Li
,
D. S.
,
Lai
,
E.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2017
, “
Modeling of Myocardium Compressibility and Its Impact in Computational Simulations of the Healthy and Infarcted Heart
,”
Functional Imaging and Modelling of the Heart: 9th International Conference, FIMH 2017, Proceedings 9
,
Toronto, ON, Canada
, June 11–13, 2017, Vol.
10263
, pp.
493
501
.10.1007/978-3-319-59448-4_47
40.
Liu
,
H.
,
Soares
,
J. S.
,
Walmsley
,
J.
,
Li
,
D. S.
,
Raut
,
S.
,
Avazmohammadi
,
R.
,
Iaizzo
,
P.
,
Palmer
,
M.
,
Gorman
,
J. H.
, and
Gorman
,
R. C.
,
2021
, “
The Impact of Myocardial Compressibility on Organ-Level Simulations of the Normal and Infarcted Heart
,”
Sci. Rep.
,
11
(
1
), p.
15
.10.1038/s41598-020-79080-w
41.
Zhang
,
W.
,
Ayoub
,
S.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2016
, “
A Meso-Scale Layer-Specific Structural Constitutive Model of the Mitral Heart Valve Leaflets
,”
Acta Biomater.
,
32
, pp.
238
255
.10.1016/j.actbio.2015.12.001
42.
Rego
,
B. V.
,
Wells
,
S. M.
,
Lee
,
C.-H.
, and
Sacks
,
M. S.
,
2016
, “
Mitral Valve Leaflet Remodelling During Pregnancy: Insights Into Cell-Mediated Recovery of Tissue Homeostasis
,”
J. R. Soc., Interface
,
13
(
125
), p.
20160709
.10.1098/rsif.2016.0709
43.
Amini
,
R.
,
Eckert
,
C. E.
,
Koomalsingh
,
K.
,
McGarvey
,
J.
,
Minakawa
,
M.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2012
, “
On the In Vivo Deformation of the Mitral Valve Anterior Leaflet: Effects of Annular Geometry and Referential Configuration
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1455
1467
.10.1007/s10439-012-0524-5
44.
Lee
,
C.-H.
,
Zhang
,
W.
,
Feaver
,
K.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2017
, “
On the In Vivo Function of the Mitral Heart Valve Leaflet: Insights Into Tissue-Interstitial Cell Biomechanical Coupling
,”
Biomech. Model. Mechanobiol.
,
16
(
5
), pp.
1613
1632
.10.1007/s10237-017-0908-4
45.
Iaizzo
,
P. A.
,
2009
,
Handbook of Cardiac Anatomy, Physiology, and Devices
,
Springer Science & Business Media
, West Sussex, UK.
46.
Bothe
,
W.
,
Timek
,
T. A.
,
Tibayan
,
F. A.
,
Walther
,
M.
,
Daughters
,
G. T.
,
Ingels
,
N. B.
, Jr.
, and
Miller
,
D. C.
,
2019
, “
Characterization of 3-Dimensional Papillary Muscle Displacement in In Vivo Ovine Models of Ischemic/Functional Mitral Regurgitation
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
4
), pp.
1444
1449
.10.1016/j.jtcvs.2018.09.069
47.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester; New York
.
48.
Wang
,
V. Y.
,
Lam
,
H.
,
Ennis
,
D. B.
,
Cowan
,
B. R.
,
Young
,
A. A.
, and
Nash
,
M. P.
,
2009
, “
Modelling Passive Diastolic Mechanics With Quantitative MRI of Cardiac Structure and Function
,”
Med. Image Anal.
,
13
(
5
), pp.
773
784
.10.1016/j.media.2009.07.006
49.
Hunter
,
P.
,
McCulloch
,
A.
, and
Ter Keurs
,
H.
,
1998
, “
Modelling the Mechanical Properties of Cardiac Muscle
,”
Prog. Biophys. Mol. Biol.
,
69
(
2–3
), pp.
289
331
.10.1016/S0079-6107(98)00013-3
50.
Rego
,
B. V.
,
Khalighi
,
A. H.
,
Drach
,
A.
,
Lai
,
E. K.
,
Pouch
,
A. M.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Sacks
,
M. S.
,
2018
, “
A Noninvasive Method for the Determination of In Vivo Mitral Valve Leaflet Strains
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
12
), p.
e3142
.10.1002/cnm.3142
51.
Khalighi
,
A. H.
,
Rego
,
B. V.
,
Drach
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2019
, “
Development of a Functionally Equivalent Model of the Mitral Valve Chordae Tendineae Through Topology Optimization
,”
Ann. Biomed. Eng.
,
47
(
1
), pp.
60
74
.10.1007/s10439-018-02122-y
52.
Lee
,
C.-H.
,
Rabbah
,
J.-P.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, and
Sacks
,
M. S.
,
2015
, “
On the Effects of Leaflet Microstructure and Constitutive Model on the Closing Behavior of the Mitral Valve
,”
Biomech. Model. Mechanobiol.
,
14
(
6
), pp.
1281
1302
.10.1007/s10237-015-0674-0
53.
Avazmohammadi
,
R.
,
Mendiola
,
E. A.
,
Soares
,
J. S.
,
Li
,
D. S.
,
Chen
,
Z.
,
Merchant
,
S.
,
Hsu
,
E. W.
,
Vanderslice
,
P.
,
Dixon
,
R. A. F.
, and
Sacks
,
M. S.
,
2019
, “
A Computational Cardiac Model for the Adaptation to Pulmonary Arterial Hypertension in the Rat
,”
Ann. Biomed. Eng.
,
47
(
1
), pp.
138
153
.10.1007/s10439-018-02130-y
54.
Sacks
,
M. S.
,
Drach
,
A.
,
Lee
,
C.-H.
,
Khalighi
,
A. H.
,
Rego
,
B. V.
,
Zhang
,
W.
,
Ayoub
,
S.
,
Yoganathan
,
A. P.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
,
2019
, “
On the Simulation of Mitral Valve Function in Health, Disease, and Treatment
,”
ASME J. Biomech. Eng.
,
141
(
7
), p.
070804
.10.1115/1.4043552
55.
Narang
,
H.
,
Rego
,
B. V.
,
Khalighi
,
A. H.
,
Aly
,
A.
,
Pouch
,
A. M.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, III
, and
Sacks
,
M. S.
,
2021
, “
Pre-Surgical Prediction of Ischemic Mitral Regurgitation Recurrence Using In Vivo Mitral Valve Leaflet Strains
,”
Ann. Biomed. Eng.
,
49
(
12
), pp.
3711
3723
.10.1007/s10439-021-02772-5
56.
Klotz
,
S.
,
Dickstein
,
M. L.
, and
Burkhoff
,
D.
,
2007
, “
A Computational Method of Prediction of the End-Diastolic Pressure–Volume Relationship by Single Beat
,”
Nat. Protoc.
,
2
(
9
), pp.
2152
2158
.10.1038/nprot.2007.270
57.
Shimkunas
,
R.
,
Zhang
,
Z.
,
Wenk
,
J. F.
,
Soleimani
,
M.
,
Khazalpour
,
M.
,
Acevedo-Bolton
,
G.
,
Wang
,
G.
, et al.,
2013
, “
Left Ventricular Myocardial Contractility is Depressed in the Borderzone After Posterolateral Myocardial Infarction
,”
Ann. Thorac. Surg.
,
95
(
5
), pp.
1619
1625
.10.1016/j.athoracsur.2013.02.005
58.
Lindsey
,
M. L.
,
Bolli
,
R.
,
Canty
,
J. M.
, Jr.
,
Du
,
X.-J.
,
Frangogiannis
,
N. G.
,
Frantz
,
S.
,
Gourdie
,
R. G.
, et al.,
2018
, “
Guidelines for Experimental Models of Myocardial Ischemia and Infarction
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
314
(
4
), pp.
H812
H838
.10.1152/ajpheart.00335.2017
59.
Ryan
,
L. P.
,
Jackson
,
B. M.
,
Parish
,
L. M.
,
Plappert
,
T. J.
,
John-Sutton
,
M. G. S.
,
Gorman
,
J. H.
, III
, and
Gorman
,
R. C.
,
2007
, “
Regional and Global Patterns of Annular Remodeling in Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
84
(
2
), pp.
553
559
.10.1016/j.athoracsur.2007.04.016
60.
Moainie
,
S. L.
,
Gorman
,
J. H.
, III
,
Guy
,
T.
,
Bowen
,
F. W.
, III
,
Jackson
,
B. M.
,
Plappert
,
T.
,
Narula
,
N.
, et al.,
2002
, “
An Ovine Model of Postinfarction Dilated Cardiomyopathy
,”
Ann. Thorac. Surg.
,
74
(
3
), pp.
753
760
.10.1016/S0003-4975(02)03827-4
61.
Kelley
,
S. T.
,
Malekan
,
R.
,
Gorman
,
J. H.
, III
,
Jackson
,
B. M.
,
Gorman
,
R. C.
,
Suzuki
,
Y.
,
Plappert
,
T.
,
Bogen
,
D. K.
,
Sutton
,
M. G. S. J.
, and
Edmunds
,
L. H.
, Jr.
,
1999
, “
Restraining Infarct Expansion Preserves Left Ventricular Geometry and Function After Acute Anteroapical Infarction
,”
Circulation
,
99
(
1
), pp.
135
142
.10.1161/01.CIR.99.1.135
62.
Guy
,
T. S.
,
Moainie
,
S. L.
,
Gorman
,
J. H.
,
Jackson
,
B. M.
,
Plappert
,
T.
,
Enomoto
,
Y.
,
St. John-Sutton
,
M. G.
,
Edmunds
,
L. H.
, and
Gorman
,
R. C.
,
2004
, “
Prevention of Ischemic Mitral Regurgitation Does Not Influence the Outcome of Remodeling After Posterolateral Myocardial Infarction
,”
J. Am. Coll. Cardiol.
,
43
(
3
), pp.
377
383
.10.1016/j.jacc.2003.07.045
63.
Dujardin
,
K. S.
,
Enriquez-Sarano
,
M.
,
Bailey
,
K. R.
,
Nishimura
,
R. A.
,
Seward
,
J. B.
, and
Tajik
,
A. J.
,
1997
, “
Grading of Mitral Regurgitation by Quantitative Doppler Echocardiography: Calibration by Left Ventricular Angiography in Routine Clinical Practice
,”
Circulation
,
96
(
10
), pp.
3409
3415
.10.1161/01.CIR.96.10.3409
64.
Eckert
,
C. E.
,
Zubiate
,
B.
,
Vergnat
,
M.
,
Gorman
,
J. H.
, 3rd
,
Gorman
,
R. C.
, and
Sacks
,
M. S.
,
2009
, “
In Vivo Dynamic Deformation of the Mitral Valve Annulus
,”
Ann. Biomed. Eng.
,
37
(
9
), pp.
1757
1771
.10.1007/s10439-009-9749-3
65.
Ryan
,
L. P.
,
Jackson
,
B. M.
,
Hamamoto
,
H.
,
Eperjesi
,
T. J.
,
Plappert
,
T. J.
,
St John-Sutton
,
M.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, 3rd
,
2008
, “
The Influence of Annuloplasty Ring Geometry on Mitral Leaflet Curvature
,”
Ann. Thorac. Surg.
,
86
(
3
), pp.
749
760
.10.1016/j.athoracsur.2008.03.079
66.
Sakamoto
,
H.
,
Parish
,
L. M.
,
Hamamoto
,
H.
,
Ryan
,
L. P.
,
Eperjesi
,
T. J.
,
Plappert
,
T. J.
,
Jackson
,
B. M.
,
St John-Sutton
,
M. G.
,
Gorman
,
J. H.
, 3rd
, and
Gorman
,
R. C.
,
2007
, “
Effect of Reperfusion on Left Ventricular Regional Remodeling Strains After Myocardial Infarction
,”
Ann. Thorac. Surg.
,
84
(
5
), pp.
1528
1536
.10.1016/j.athoracsur.2007.05.060
67.
Ryan
,
L. P.
,
Jackson
,
B. M.
,
Parish
,
L. M.
,
Sakamoto
,
H.
,
Plappert
,
T. J.
,
St John-Sutton
,
M.
,
Gorman
,
J. H.
, 3rd
, and
Gorman
,
R. C.
,
2007
, “
Mitral Valve Tenting Index for Assessment of Subvalvular Remodeling
,”
Ann. Thorac. Surg.
,
84
(
4
), pp.
1243
1249
.10.1016/j.athoracsur.2007.05.005
68.
Gorman
,
J. H.
, 3rd
, and
Gorman
,
R. C.
,
2006
, “
Mitral Valve Surgery for Heart Failure: A Failed Innovation?
,”
Semin. Thorac. Cardiovasc. Surg.
,
18
(
2
), pp.
135
138
.10.1053/j.semtcvs.2006.07.003
69.
Enomoto
,
Y.
,
Gorman
,
J. H.
, 3rd
,
Moainie
,
S. L.
,
Jackson
,
B. M.
,
Parish
,
L. M.
,
Plappert
,
T.
,
Zeeshan
,
A.
,
St John-Sutton
,
M. G.
, and
Gorman
,
R. C.
,
2005
, “
Early Ventricular Restraint After Myocardial Infarction: Extent of the Wrap Determines the Outcome of Remodeling
,”
Ann. Thorac. Surg.
,
79
(
3
), pp.
881
887
.10.1016/j.athoracsur.2004.05.072
70.
Dang
,
A. B.
,
Guccione
,
J. M.
,
Zhang
,
P.
,
Wallace
,
A. W.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, 3rd
, and
Ratcliffe
,
M. B.
,
2005
, “
Effect of Ventricular Size and Patch Stiffness in Surgical Anterior Ventricular Restoration: A Finite Element Model Study
,”
Ann. Thorac. Surg.
,
79
(
1
), pp.
185
193
.10.1016/j.athoracsur.2004.06.007
71.
Parish
,
L. M.
,
Jackson
,
B. M.
,
Enomoto
,
Y.
,
Gorman
,
R. C.
, and
Gorman
,
J. H.
, 3rd
,
2004
, “
The Dynamic Anterior Mitral Annulus
,”
Ann. Thorac. Surg.
,
78
(
4
), pp.
1248
1255
.10.1016/j.athoracsur.2004.04.055
72.
Kheradvar
,
A.
,
Gorman
,
R. C.
,
Gorman
,
J. H.
, 3rd
,
Zeeshan
,
A.
, and
Gharib
,
M.
,
2004
, “
Evaluation of Isovolumic Relaxation Phase in the Process of Ventricular Remodeling Following Myocardial Infarction
,”
The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, San Francisco, CA, Sept. 1–5, pp.
3654
3657
.10.1109/IEMBS.2004.1404027
73.
Jackson
,
B. M.
,
Gorman
,
J. H.
, 3rd
, and
Gorman
,
R. C.
,
2004
, “
Increased Border-Zone Stress in Bulging Ventricular Aneurysm
,”
Ann. Thorac. Surg.
,
77
(
5
), p.
1876
.10.1016/S0003-4975(03)01161-5
74.
Gorman
,
J. H.
, 3rd
,
Jackson
,
B. M.
,
Enomoto
,
Y.
, and
Gorman
,
R. C.
,
2004
, “
The Effect of Regional Ischemia on Mitral Valve Annular Saddle Shape
,”
Ann. Thorac. Surg.
,
77
(
2
), pp.
544
548
.10.1016/S0003-4975(03)01354-7
75.
Wilson
,
E. M.
,
Moainie
,
S. L.
,
Baskin
,
J. M.
,
Lowry
,
A. S.
,
Deschamps
,
A. M.
,
Mukherjee
,
R.
,
Guy
,
T. S.
, et al.,
2003
, “
Region- and Type-Specific Induction of Matrix Metalloproteinases in Post-Myocardial Infarction Remodeling
,”
Circulation
,
107
(
22
), pp.
2857
2863
.10.1161/01.CIR.0000068375.40887.FA
76.
R. C.
Gorman
, and
J. H.
Gorman
, 3rd
,
2003
, “
Does Repair of Ischemic Mitral Regurgitation Help?
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1775
1776
.10.1016/S0003-4975(03)00258-3
77.
Gorman
,
J. H.
, 3rd
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Enomoto
,
Y.
,
St John-Sutton
,
M. G.
, and
Edmunds
,
L. H.
, Jr.
,
2003
, “
Annuloplasty Ring Selection for Chronic Ischemic Mitral Regurgitation: Lessons From the Ovine Model
,”
Ann. Thorac. Surg.
,
76
(
5
), pp.
1556
1563
.10.1016/S0003-4975(03)00891-9
78.
Pilla
,
J. J.
,
Blom
,
A. S.
,
Brockman
,
D. J.
,
Bowen
,
F.
,
Yuan
,
Q.
,
Giammarco
,
J.
,
Ferrari
,
V. A.
,
Gorman
,
J. H.
, 3rd
,
Gorman
,
R. C.
, and
Acker
,
M. A.
,
2002
, “
Ventricular Constraint Using the Acorn Cardiac Support Device Reduces Myocardial Akinetic Area in an Ovine Model of Acute Infarction
,”
Circulation
,
106
(
12_suppl_1
), pp.
I207
I211
.10.1161/01.cir.0000032871.55215.de
79.
Moainie
,
S. L.
,
Guy
,
T. S.
,
Gorman
,
J. H.
, 3rd
,
Plappert
,
T.
,
Jackson
,
B. M.
,
St John-Sutton
,
M. G.
,
Edmunds
,
L. H.
, Jr.
, and
Gorman
,
R. C.
,
2002
, “
Infarct Restraint Attenuates Remodeling and Reduces Chronic Ischemic Mitral Regurgitation After Postero-Lateral Infarction
,”
Ann. Thorac. Surg.
,
74
(
2
), pp.
444
449
.10.1016/S0003-4975(02)03747-5
80.
Gorman
,
J. H.
,
Jackson
,
B. M.
,
Moainie
,
S. L.
,
Guy
,
T. S.
,
St. John-Sutton
,
M.
,
Edmunds
,
L. H.
, and
Gorman
,
R. C.
,
2002
, “
Loss of Annular Saddle Shape is Associated With Acute Ischemic Mitral Regurgitation
,”
J. Am. Coll. Cardiol.
,
39
, pp.
417
417
.10.1016/S0735-1097(02)81872-1
81.
Gorman
,
J. H.
, 3rd
,
Jackson
,
B. M.
,
Gorman
,
R. C.
,
Kelley
,
S. T.
,
Gikakis
,
N.
, and
Edmunds
,
L. H.
, Jr.
,
1997
, “
Papillary Muscle Discoordination Rather Than Increased Annular Area Facilitates Mitral Regurgitation After Acute Posterior Myocardial Infarction
,”
Circulation
,
96
(
9 Suppl
), pp.
124
127
.https://pubmed.ncbi.nlm.nih.gov/9386086/
82.
Gorman
,
J. H.
, 3rd
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Hiramatsu
,
Y.
,
Gikakis
,
N.
,
Kelley
,
S. T.
,
Sutton
,
M. G.
,
Plappert
,
T.
, and
Edmunds
,
L. H.
, Jr.
,
1997
, “
Distortions of the Mitral Valve in Acute Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
64
(
4
), pp.
1026
1031
.10.1016/S0003-4975(97)00850-3
83.
Gorman
,
J. H.
, 3rd
,
Gupta
,
K. B.
,
Streicher
,
J. T.
,
Gorman
,
R. C.
,
Jackson
,
B. M.
,
Ratcliffe
,
M. B.
,
Bogen
,
D. K.
, and
Edmunds
,
L. H.
, Jr.
,
1996
, “
Dynamic Three-Dimensional Imaging of the Mitral Valve and Left Ventricle by Rapid Sonomicrometry Array Localization
,”
J. Thorac. Cardiovasc. Surg.
,
112
(
3
), pp.
712
724
.10.1016/S0022-5223(96)70056-9
84.
Llaneras
,
M. R.
,
Nance
,
M. L.
,
Streicher
,
J. T.
,
Lima
,
J. A.
,
Savino
,
J. S.
,
Bogen
,
D. K.
,
Deac
,
R. F.
,
Ratcliffe
,
M. B.
, and
Edmunds
,
L. H.
, Jr.
,
1994
, “
Large Animal Model of Ischemic Mitral Regurgitation
,”
Ann. Thorac. Surg.
,
57
(
2
), pp.
432
439
.10.1016/0003-4975(94)91012-X
85.
Avazmohammadi
,
R.
,
Hill
,
M.
,
Simon
,
M.
, and
Sacks
,
M.
,
2017
, “
Transmural Remodeling of Right Ventricular Myocardium in Response to Pulmonary Arterial Hypertension
,”
APL Bioeng.
,
1
(
1
), p.
016105
.10.1063/1.5011639
86.
Jang
,
S.
,
Vanderpool
,
R.
,
Avazmohammadi
,
R.
,
Lapshin
,
E.
,
Bachman
,
T.
,
Sacks
,
M.
, and
Simon
,
M.
,
2017
, “
Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance
,”
J. Am. Heart Assoc.
,
6
(
9
), p.
e006084
.10.1161/JAHA.117.006084
87.
Johnson
,
E. L.
,
Wu
,
M. C.
,
Xu
,
F.
,
Wiese
,
N. M.
,
Rajanna
,
M. R.
,
Herrema
,
A. J.
,
Ganapathysubramanian
,
B.
,
Hughes
,
T. J.
,
Sacks
,
M. S.
, and
Hsu
,
M.-C.
,
2020
, “
Thinner Biological Tissues Induce Leaflet Flutter in Aortic Heart Valve Replacements
,”
Proc. Natl. Acad. Sci.
,
117
(
32
), pp.
19007
19016
.10.1073/pnas.2002821117
88.
Wenk
,
J. F.
,
Klepach
,
D.
,
Lee
,
L. C.
,
Zhang
,
Z.
,
Ge
,
L.
,
Tseng
,
E. E.
,
Martin
,
A.
, et al.,
2012
, “
First Evidence of Depressed Contractility in the Border Zone of a Human Myocardial Infarction
,”
Ann. Thorac. Surg.
,
93
(
4
), pp.
1188
1193
.10.1016/j.athoracsur.2011.12.066
89.
Forrester
,
J. S.
,
Diamond
,
G.
,
Parmley
,
W. W.
, and
Swan
,
H.
,
1972
, “
Early Increase in Left Ventricular Compliance After Myocardial Infarction
,”
J. Clin. Invest.
,
51
(
3
), pp.
598
603
.10.1172/JCI106849
90.
Villarreal
,
F. J.
,
Lew
,
W.
,
Waldman
,
L. K.
, and
Covell
,
J. W.
,
1991
, “
Transmural Myocardial Deformation in the Ischemic Canine Left Ventricle
,”
Circ. Res.
,
68
(
2
), pp.
368
381
.10.1161/01.RES.68.2.368
You do not currently have access to this content.