Abstract

Crouch gait is one of the most common compensatory walking patterns found in individuals with neurological disorders, often accompanied by their limited physical capacity. Notable kinematic characteristics of crouch gait are excessive knee flexion during stance and reduced range of motion during swing. Knee exoskeletons have the potential to improve crouch gait by providing precisely controlled torque assistance directly to the knee joint. In this study, we implemented a finite-state machine-based impedance controller for a powered knee exoskeleton to provide assistance during both stance and swing phases for five children and young adults who exhibit chronic crouch gait. The assistance provided a strong orthotic effect, increasing stance phase knee extension by an average of 12 deg. Additionally, the knee range of motion during swing was increased by an average of 15 deg. Changes to spatiotemporal outcomes, such as preferred walking speed and percent stance phase, were inconsistent across subjects and indicative of the underlying intricacies of user response to assistance. This study demonstrates the potential of knee exoskeletons operating in impedance control to mitigate the negative kinematic characteristics of crouch gait during both stance and swing phases of gait.

References

1.
Johnson
,
D. C.
,
Damiano
,
D. L.
, and
Abel
,
M. F.
,
1997
, “
The Evolution of Gait in Childhood and Adolescent Cerebral Palsy
,”
J. Pediatr. Orthop.
,
17
(
3
), pp.
392
396
.10.1097/01241398-199705000-00022
2.
Johari
,
R.
,
Maheshwari
,
S.
,
Thomason
,
P.
, and
Khot
,
A.
, Nov
2016
, “
Musculoskeletal Evaluation of Children With Cerebral Palsy
,”
Indian J. Pediatr.
,
83
(
11
), pp.
1280
1288
.10.1007/s12098-015-1999-5
3.
Christensen
,
D.
,
Van Naarden, Braun
,
K.
,
Doernberg
,
N. S.
,
Maenner
,
M. J.
,
Arneson
,
C. L.
,
Durkin
,
M. S.
,
Benedict
,
R. E.
, et al.,
2014
, “
Prevalence of Cerebral Palsy, Co-Occurring Autism Spectrum Disorders, and Motor functioning - Autism and Developmental Disabilities Monitoring Network, USA, 2008
,”
Dev. Med. Child Neurol.
,
56
(
1
), pp.
59
65
.10.1111/dmcn.12268
4.
Durkin
,
M. S.
,
Benedict
,
R. E.
,
Christensen
,
D.
,
Dubois
,
L. A.
,
Fitzgerald
,
R. T.
,
Kirby
,
R. S.
,
Maenner
,
M. J.
,
Braun
,
K. V.
,
Wingate
,
M. S.
, and
Yeargin-Allsopp
,
M.
,
2016
, “
Prevalence of Cerebral Palsy Among 8-Year-Old Children in 2010 and Preliminary Evidence of Trends in Its Relationship to Low Birthweight
,”
Paediatr. Perinat. Epidemiol.
,
30
(
5
), pp.
496
510
.10.1111/ppe.12299
5.
Rethlefsen
,
S. A.
,
Blumstein
,
G.
,
Kay
,
R. M.
,
Dorey
,
F.
, and
Wren
,
T. A. L.
,
2017
, “
Prevalence of Specific Gait Abnormalities in Children With Cerebral Palsy Revisited: Influence of Age, Prior Surgery, and Gross Motor Function Classification System Level
,”
Dev. Med. Child Neurol.
,
59
(
1
), pp.
79
88
.10.1111/dmcn.13205
6.
Kim
,
H. S.
,
Chung
,
S. C.
,
Choi
,
M. H.
,
Gim
,
S. Y.
,
Kim
,
W. R.
,
Tack
,
G. R.
,
Lim
,
D. W.
,
Chun
,
S. K.
,
Kim
,
J. W.
, and
Mun
,
K. R.
,
2016
, “
Primary and Secondary Gait Deviations of Stroke Survivors and Their Association With Gait Performance
,”
J. Phys. Ther. Sci.
,
28
(
9
), pp.
2634
2640
.10.1589/jpts.28.2634
7.
Moen
,
T.
,
Gryfakis
,
N.
,
Dias
,
L.
, and
Lemke
,
L.
,
2005
, “
Crouched Gait in Myelomeningocele: A Comparison Between the Degree of Knee Flexion Contracture in the Clinical Examination and During Gait
,”
J. Pediatr. Orthop.
,
25
(
5
), pp.
657
660
.10.1097/01.mph.0000165136.76238.23
8.
Williams
,
G.
,
Morris
,
M. E.
,
Schache
,
A.
, and
McCrory
,
P. R.
,
2009
, “
Incidence of Gait Abnormalities After Traumatic Brain Injury
,”
Arch. Phys. Med. Rehabil.
,
90
(
4
), pp.
587
593
.10.1016/j.apmr.2008.10.013
9.
Gage
,
J. R.
,
1990
, “
Surgical Treatment of Knee Dysfunction in Cerebral Palsy
,”
Clin. Orthop. Relat. Res.
,
253
, pp.
45
54
.10.1097/00003086-199004000-00008
10.
Galey
,
S. A.
,
Lerner
,
Z. F.
,
Bulea
,
T. C.
,
Zimbler
,
S.
, and
Damiano
,
D. L.
,
2017
, “
Effectiveness of Surgical and Non-Surgical Management of Crouch Gait in Cerebral Palsy: A Systematic Review
,”
Gait Posture
,
54
, pp.
93
105
.10.1016/j.gaitpost.2017.02.024
11.
Steele
,
K. M.
,
Demers
,
M. S.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
Compressive Tibiofemoral Force During Crouch Gait
,”
Gait Posture
,
35
(
4
), pp.
556
560
.10.1016/j.gaitpost.2011.11.023
12.
Hicks
,
J. L.
,
Schwartz
,
M. H.
,
Arnold
,
A. S.
, and
Delp
,
S. L.
,
2008
, “
Crouched Postures Reduce the Capacity of Muscles to Extend the Hip and Knee During the Single-Limb Stance Phase of Gait
,”
J. Biomech.
,
41
(
5
), pp.
960
967
.10.1016/j.jbiomech.2008.01.002
13.
Lotman
,
D. B.
,
1976
, “
Knee Flexion Deformity and Patella Alta in Spastic Cerebral Palsy
,”
Dev. Med. Child Neurol.
,
18
(
3
), pp.
315
319
.10.1111/j.1469-8749.1976.tb03653.x
14.
van der Krogt
,
M. M.
,
Bregman
,
D. J. J.
,
Wisse
,
M.
,
Doorenbosch
,
C. A. M.
,
Harlaar
,
J.
, and
Collins
,
S. H.
,
2010
, “
How Crouch Gait Can Dynamically Induce Stiff-Knee Gait
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1593
1606
.10.1007/s10439-010-9952-2
15.
Hicks
,
J.
,
Arnold
,
A.
,
Anderson
,
F.
,
Schwartz
,
M.
, and
Delp
,
S.
,
2007
, “
The Effect of Excessive Tibial Torsion on the Capacity of Muscles to Extend the Hip and Knee During Single-Limb Stance
,”
Gait Posture
,
26
(
4
), pp.
546
552
.10.1016/j.gaitpost.2006.12.003
16.
Moen
,
T. C.
,
Dias
,
L.
,
Swaroop
,
V. T.
,
Gryfakis
,
N.
, and
Kelp-Lenane
,
C.
,
2011
, “
Radical Posterior Capsulectomy Improves Sagittal Knee Motion in Crouch Gait
,”
Clin. Orthop. Relat. Res.
,
469
(
5
), pp.
1286
1290
.10.1007/s11999-010-1719-4
17.
Bottos
,
M.
, and
Gericke
,
C.
,
2003
, “
Ambulatory Capacity in Cerebral Palsy: Prognostic Criteria and Consequences for Intervention
,”
Dev. Med. Child. Neurol.
,
45
(
11
), pp.
786
790
.10.1111/j.1469-8749.2003.tb00890.x
18.
Duffy
,
C. M.
,
Hill
,
A. E.
,
Cosgrove
,
A. P.
,
Carry
,
I. S.
, and
Graham
,
H. K.
,
1996
, “
Energy Consumption in Children With Spina Bifida and Cerebral Palsy: A Comparative Study
,”
Dev. Med. Child Neurol.
,
38
(
3
), pp.
238
243
.10.1111/j.1469-8749.1996.tb15085.x
19.
Huang
,
H. H.
,
2018
, “
Perspectives on Early Power Mobility Training, Motivation, and Social Participation in Young Children With Motor Disabilities
,”
Front. Psychol.
,
8
, p.
2330
.10.3389/fpsyg.2017.02330
20.
Kerkum
,
Y. L.
,
Buizer
,
A. I.
,
van den Noort
,
J. C.
,
Becher
,
J. G.
,
Harlaar
,
J.
, and
Brehm
,
M. A.
,
2015
, “
The Effects of Varying Ankle Foot Orthosis Stiffness on Gait in Children With Spastic Cerebral Palsy Who Walk With Excessive Knee Flexion
,”
PLoS One
,
10
(
11
), p.
e0142878
.10.1371/journal.pone.0142878
21.
Tian
,
F.
,
Hefzy
,
M. S.
, and
Elahinia
,
M.
,
2015
, “
State of the Art Review of Knee-Ankle-Foot Orthoses
,”
Ann. Biomed. Eng.
,
43
(
2
), pp.
427
441
.10.1007/s10439-014-1217-z
22.
Kim
,
J.
,
Porciuncula
,
F.
,
Yang
,
H. D.
,
Wendel
,
N.
,
Baker
,
T.
,
Chin
,
A.
,
Ellis
,
T. D.
, and
Walsh
,
C. J.
,
2024
, “
Soft Robotic Apparel to Avert Freezing of Gait in Parkinson's Disease
,”
Nat. Med.
,
30
(
1
), pp.
177
185
.10.1038/s41591-023-02731-8
23.
Lee
,
D.
,
Shepherd
,
M. K.
,
Mulrine
,
S. C.
,
Schneider
,
J. D.
,
Moore
,
K. F.
,
Eggebrecht
,
E. M.
,
Rogozinski
,
B. M.
,
Herrin
,
K. R.
, and
Young
,
A. J.
, Dec
2023
, “
Reducing Knee Hyperextension With an Exoskeleton in Children and Adolescents With Genu Recurvatum: A Feasibility Study
,”
IEEE Trans. Biomed. Eng.
,
70
(
12
), pp.
3312
3320
.10.1109/TBME.2023.3282165
24.
Lerner
,
Z. F.
,
Damiano
,
D. L.
, and
Bulea
,
T. C.
,
2017
, “
A Lower-Extremity Exoskeleton Improves Knee Extension in Children With Crouch Gait From Cerebral Palsy
,”
Sci. Transl. Med.
,
9
(
404
), p.
eaam9145
.10.1126/scitranslmed.aam9145
25.
Shi
,
B.
,
Chen
,
X.
,
Yue
,
Z.
,
Yin
,
S.
,
Weng
,
Q.
,
Zhang
,
X.
,
Wang
,
J.
, and
Wen
,
W.
,
2019
, “
Wearable Ankle Robots in Post-Stroke Rehabilitation of Gait: A Systematic Review
,”
Front. Neurorobot.
,
13
, p.
63
.10.3389/fnbot.2019.00063
26.
Martinez
,
A.
,
Durrough
,
C.
, and
Goldfarb
,
M.
,
2020
, “
A Single-Joint Implementation of Flow Control: Knee Joint Walking Assistance for Individuals With Mobility Impairment
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
4
), pp.
934
942
.10.1109/TNSRE.2020.2977339
27.
Lerner
,
Z. F.
,
Damiano
,
D. L.
, and
Bulea
,
T. C.
,
2016
, “
Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
6
), pp.
621
629
.10.1109/TNSRE.2016.2550860
28.
Chen
,
J.
,
Hochstein
,
J.
,
Kim
,
C.
,
Tucker
,
L.
,
Hammel
,
L. E.
,
Damiano
,
D. L.
, and
Bulea
,
T. C.
,
2021
, “
A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy
,”
Front. Robot. AI
,
8
, p.
702137
.10.3389/frobt.2021.702137
29.
Lerner
,
Z. F.
,
Gasparri
,
G. M.
,
Bair
,
M. O.
,
Lawson
,
J. L.
,
Luque
,
J.
,
Harvey
,
T. A.
, and
Lerner
,
A. T.
,
2018
, “
An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
10
), pp.
1985
1993
.10.1109/TNSRE.2018.2870756
30.
Conner
,
B. C.
,
Luque
,
J.
, and
Lerner
,
Z. F.
,
2020
, “
Adaptive Ankle Resistance From a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy
,”
Ann. Biomed. Eng.
,
48
(
4
), pp.
1309
1321
.10.1007/s10439-020-02454-8
31.
Gasparri
,
G. M.
,
Luque
,
J.
, and
Lerner
,
Z. F.
,
2019
, “
Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
4
), pp.
751
759
.10.1109/TNSRE.2019.2905979
32.
Lee
,
D.
,
McLain
,
B.
,
Kang
,
I.
, and
Young
,
A.
, Sep
2021
, “
Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton
,”
IEEE Trans. Bio-Med. Eng.
,
68
(
9
), pp.
2870
2879
.10.1109/TBME.2021.3083580
33.
Kiernan
,
D.
, and
O'Sullivan
,
R.
,
2019
, “
The Influence of Crouch Gait on Sagittal Trunk Position and Lower Lumbar Spinal Loading in Children With Cerebral Palsy
,”
Gait Posture
,
67
, pp.
65
70
.10.1016/j.gaitpost.2018.09.003
34.
Brooks
,
J.
,
Day
,
S.
,
Shavelle
,
R.
, and
Strauss
,
D.
,
2011
, “
Low Weight, Morbidity, and Mortality in Children With Cerebral Palsy: New Clinical Growth Charts
,”
Pediatrics
,
128
(
2
), pp.
E299
E307
.10.1542/peds.2010-2801
35.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part II—Implementation
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
8
16
.10.1115/1.3140713
36.
Davis
,
R. B.
,
Davids
,
J. R.
,
Gorton
,
G. E.
,
Aiona
,
M.
,
Scarborough
,
N.
,
Oeffinger
,
D.
,
Tylkowski
,
C.
, and
Bagley
,
A.
, “
A Minimum Standardized Gait Analysis Protocol: Development and Implementation by the Shriners Motion Analysis Laboratory Network (SMALnet)
,”
Pediatric Gait: A New Millennium in Clinical Care and Motion Analysis Technology
, Chicago, IL, July 22, pp.
1
7
.10.1109/PG.2000.858868
37.
Kim
,
C. J.
, and
Son
,
S. M.
,
2014
, “
Comparison of Spatiotemporal Gait Parameters Between Children With Normal Development and Children With Diplegic Cerebral Palsy
,”
J. Phys. Ther. Sci.
,
26
(
9
), pp.
1317
1319
.10.1589/jpts.26.1317
38.
Everaert
,
L.
,
Papageorgiou
,
E.
,
Van Campenhout
,
A.
,
Labey
,
L.
, and
Desloovere
,
K.
,
2023
, “
The Influence of Ankle-Foot Orthoses on Gait Pathology in Children With Cerebral Palsy: A Retrospective Study
,”
Gait Posture
,
100
, pp.
149
156
.10.1016/j.gaitpost.2022.11.063
39.
Aboutorabi
,
A.
,
Arazpour
,
M.
,
Ahmadi Bani
,
M.
,
Saeedi
,
H.
, and
Head
,
J. S.
,
2017
, “
Efficacy of Ankle Foot Orthoses Types on Walking in Children With Cerebral Palsy: A Systematic Review
,”
Ann. Phys. Rehabil. Med.
,
60
(
6
), pp.
393
402
.10.1016/j.rehab.2017.05.004
40.
Steele
,
K. M.
,
Shuman
,
B. R.
, and
Schwartz
,
M. H.
,
2017
, “
Crouch Severity is a Poor Predictor of Elevated Oxygen Consumption in Cerebral Palsy
,”
J. Biomech.
,
60
, pp.
170
174
.10.1016/j.jbiomech.2017.06.036
You do not currently have access to this content.