Abstract

Functional electrical stimulation (FES) is often used in poststroke gait rehabilitation to address decreased walking speed, foot drop, and decreased forward propulsion. However, not all individuals experience clinically meaningful improvements in gait function with stimulation. Previous research has developed adaptive functional electrical stimulation (AFES) systems that adjust stimulation timing and amplitude at every stride to deliver optimal stimulation. The purpose of this work was to determine the effects of a novel AFES system on functional gait outcomes and compare them to the effects of the existing FES system. Twenty-four individuals with chronic poststroke hemiparesis completed 64-min walking trials on an adaptive and fixed-speed treadmill with no stimulation, stimulation from the existing FES system, and stimulation from the AFES system. There was no significant effect of stimulation condition on walking speed, peak dorsiflexion angle, or peak propulsive force. Walking speed was significantly faster and peak propulsive force was significantly larger on the adaptive treadmill (ATM) than the fixed-speed treadmill (both p < 0.0001). Dorsiflexor stimulation timing was similar between stimulation conditions, but plantarflexor stimulation timing was significantly improved with the AFES system compared to the FES system (p = 0.0059). Variability between and within subjects was substantial, and some subjects experienced clinically meaningful improvements in walking speed, peak dorsiflexion angle, and peak propulsive force. However, not all subjects experienced benefits, suggesting that further research to characterize which subjects exhibit the best instantaneous response to FES is needed to optimize poststroke gait rehabilitation using FES.

References

1.
Benjamin
,
E. J.
,
Muntner
,
P.
,
Alonso
,
A.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
, et al.,
2019
, “
Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association
,”
Circulation
,
139
(
10
), pp.
e56
e528
.10.1161/CIR.0000000000000659
2.
Dickstein
,
R.
,
2008
, “
Rehabilitation of Gait Speed After Stroke: A Critical Review of Intervention Approaches
,”
Neurorehabil. Neural Repair
,
22
(
6
), pp.
649
660
.10.1177/1545968308315997
3.
Roelker
,
S. A.
,
Bowden
,
M. G.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2019
, “
Paretic Propulsion as a Measure of Walking Performance and Functional Motor Recovery Post-Stroke: A Review
,”
Gait Posture
,
68
, pp.
6
14
.10.1016/j.gaitpost.2018.10.027
4.
Patterson
,
S. L.
,
Forrester
,
L. W.
,
Rodgers
,
M. M.
,
Ryan
,
A. S.
,
Ivey
,
F. M.
,
Sorkin
,
J. D.
, and
Macko
,
R. F.
,
2007
, “
Determinants of Walking Function After Stroke: Differences by Deficit Severity
,”
Arch. Phys. Med. Rehabil.
,
88
(
1
), pp.
115
119
.10.1016/j.apmr.2006.10.025
5.
Lynch
,
C. L.
, and
Popovic
,
M. R.
,
2008
, “
Functional Electrical Stimulation
,”
IEEE Control Syst.
,
28
(
2
), pp.
40
50
.10.1109/MCS.2007.914689.
6.
Awad
,
L. N.
,
Lewek
,
M. D.
,
Kesar
,
T. M.
,
Franz
,
J. R.
, and
Bowden
,
M. G.
,
2020
, “
These Legs Were Made for Propulsion: Advancing the Diagnosis and Treatment of Post-Stroke Propulsion Deficits
,”
J. NeuroEng. Rehabil.
,
17
(
1
), Article No. 139.10.1186/s12984-020-00747-6
7.
Bohannon
,
R. W.
,
Morton
,
M. G.
, and
Wikholm
,
J. B.
,
1991
, “
Importance of Four Variables of Walking to Patients With Stroke
,”
Int. J. Rehabil. Res.
,
14
(
3
), pp.
246
250
.10.1097/00004356-199109000-00010
8.
Jørgensen
,
H. S.
,
Nakayama
,
H.
,
Raaschou
,
H. O.
, and
Olsen
,
T. S.
,
1995
, “
Recovery of Walking Function in Stroke Patients: The Copenhagen Stroke Study
,”
Arch. Phys. Med. Rehabil.
,
76
(
1
), pp.
27
32
.10.1016/S0003-9993(95)80038-7
9.
Langhorne
,
P.
,
Coupar
,
F.
, and
Pollock
,
A.
,
2009
, “
Motor Recovery After Stroke: A Systematic Review
,”
Lancet Neurol.
,
8
(
8
), pp.
741
754
.10.1016/S1474-4422(09)70150-4
10.
Kesar
,
T. M.
,
Perumal
,
R.
,
Reisman
,
D. S.
,
Jancosko
,
A.
,
Rudolph
,
K. S.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2009
, “
Functional Electrical Stimulation of Ankle Plantarflexor and Dorsiflexor Muscles: Effects on Poststroke Gait
,”
Stroke
,
40
(
12
), pp.
3821
3827
.10.1161/STROKEAHA.109.560375
11.
Li
,
S.
,
Francisco
,
G. E.
, and
Zhou
,
P.
,
2018
, “
Post-Stroke Hemiplegic Gait: New Perspective and Insights
,”
Front. Physiol.
,
9
, pp.
1
8
.10.3389/fphys.2018.01021
12.
Bowden
,
M. G.
,
Balasubramanian
,
C. K.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2006
, “
Anterior-Posterior Ground Reaction Forces as a Measure of Paretic Leg Contribution in Hemiparetic Walking
,”
Stroke
,
37
(
3
), pp.
872
876
.10.1161/01.STR.0000204063.75779.8d
13.
Allen
,
J. L.
,
Ting
,
L. H.
, and
Kesar
,
T. M.
,
2018
, “
Gait Rehabilitation Using Functional Electrical Stimulation Induces Changes in Ankle Muscle Coordination in Stroke Survivors: A Preliminary Study
,”
Front. Neurol.
,
9
, p.
1127
.10.3389/fneur.2018.01127
14.
Reisman
,
D. S.
,
Kesar
,
T. M.
,
Perumal
,
R.
,
Roos
,
M.
,
Rudolph
,
K. S.
,
Higginson
,
J. S.
,
Helm
,
E.
, and
Binder-Macleod
,
S. A.
,
2013
, “
Time Course of Functional and Biomechanical Improvements During a Gait Training Intervention in Persons With Chronic Stroke
,”
J. Neurol. Phys. Ther.
,
37
(
4
), pp.
159
165
.10.1097/NPT.0000000000000020
15.
Kesar
,
T. M.
,
Reisman
,
D. S.
,
Perumal
,
R.
,
Jancosko
,
A. M.
,
Higginson
,
J. S.
,
Rudolph
,
K. S.
, and
Binder-Macleod
,
S. A.
,
2011
, “
Combined Effects of Fast Treadmill Walking and Functional Electrical Stimulation on Post-Stroke Gait
,”
Gait Posture
,
33
(
2
), pp.
309
313
.10.1016/j.gaitpost.2010.11.019
16.
Ray
,
N. T.
,
Reisman
,
D. S.
, and
Higginson
,
J. S.
,
2021
, “
Combined User-Driven Treadmill Control and Functional Electrical Stimulation Increases Walking Speeds Poststroke
,”
J. Biomech.
,
124
, p.
110480
.10.1016/j.jbiomech.2021.110480
17.
Embrey
,
D. G.
,
Holtz
,
S. L.
,
Alon
,
G.
,
Brandsma
,
B. A.
, and
McCoy
,
S. W.
,
2010
, “
Functional Electrical Stimulation to Dorsiflexors and Plantar Flexors During Gait to Improve Walking in Adults With Chronic Hemiplegia
,”
Arch. Phys. Med. Rehabil.
,
91
(
5
), pp.
687
696
.10.1016/j.apmr.2009.12.024
18.
Jiang
,
C.
,
Zheng
,
M.
,
Li
,
Y.
,
Wang
,
X.
,
Li
,
L.
, and
Song
,
R.
,
2020
, “
Iterative Adjustment of Stimulation Timing and Intensity During FES-Assisted Treadmill Walking for Patients After Stroke
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
6
), pp.
1292
1298
.10.1109/TNSRE.2020.2986295
19.
Seel
,
T.
,
Laidig
,
D.
,
Valtin
,
M.
,
Werner
,
C.
,
Raisch
,
J. J.
, and
Schauer
,
T.
,
2014
, “
Feedback Control of Foot Eversion in the Adaptive Peroneal Stimulator
,”
2014 22nd Mediterranean Conference on Control and Automation
, Palermo, Italy, June 16–19, pp.
1482
1487
.10.1109/MED.2014.6961585
20.
Chen
,
W. L.
,
Chen
,
S. C.
,
Chen
,
C. C.
,
Chou
,
C. H.
,
Shih
,
Y. Y.
,
Chen
,
Y. L.
, and
Kuo
,
T. S.
,
2010
, “
Patient-Driven Loop Control for Ambulation Function Restoration in a Non-Invasive Functional Electrical Stimulation System
,”
Disability Rehabil.
,
32
(
1
), pp.
65
71
.10.3109/09638280903026564
21.
Seel
,
T.
,
Werner
,
C.
, and
Schauer
,
T.
,
2016
, “
The Adaptive Drop Foot Stimulator - Multivariable Learning Control of Foot Pitch and Roll Motion in Paretic Gait
,”
Med. Eng. Phys.
,
38
(
11
), pp.
1205
1213
.10.1016/j.medengphy.2016.06.009
22.
Chen
,
G.
,
Shen
,
Z.
,
Zhuang
,
Y.
,
Wang
,
X.
, and
Song
,
R.
,
2018
, “
Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction
,”
Front. Neurol.
,
9
, p.
165
.10.3389/fneur.2018.00165
23.
Chen
,
Y.-L.
,
Li
,
Y.-C.
,
Kuo
,
T.-S.
, and
Lai
,
J.-S.
,
2001
, “
The Development of a Closed-Loop Controlled Functional Electrical Stimulation (FES) in Gait Training
,”
J. Med. Eng. Technol.
,
25
(
2
), pp.
41
48
.10.1080/03091900110043612
24.
Li
,
Y.
,
Yang
,
X.
,
Zhou
,
Y.
,
Chen
,
J.
,
Du
,
M.
, and
Yang
,
Y.
,
2021
, “
Adaptive Stimulation Profiles Modulation for Foot Drop Correction Using Functional Electrical Stimulation: A Proof of Concept Study
,”
IEEE J. Biomed. Health Inform.
,
25
(
1
), pp.
59
68
.10.1109/JBHI.2020.2989747
25.
Melo
,
P. L.
,
Silva
,
M. T.
,
Martins
,
J. M.
, and
Newman
,
D. J.
,
2015
, “
Technical Developments of Functional Electrical Stimulation to Correct Drop Foot: Sensing, Actuation and Control Strategies
,”
Clin. Biomech.
,
30
(
2
), pp.
101
113
.10.1016/j.clinbiomech.2014.11.007
26.
Awad
,
L. N.
,
Reisman
,
D. S.
,
Kesar
,
T. M.
, and
Binder-Macleod
,
S. A.
,
2014
, “
Targeting Paretic Propulsion to Improve Poststroke Walking Function: A Preliminary Study
,”
Arch. Phys. Med. Rehabil.
,
95
(
5
), pp.
840
848
.10.1016/j.apmr.2013.12.012
27.
Conway
,
K. A.
,
Bissette
,
R. G.
, and
Franz
,
J. R.
,
2018
, “
The Functional Utilization of Propulsive Capacity During Human Walking
,”
J. Appl. Biomech.
,
34
(
6
), pp.
474
482
.10.1123/jab.2017-0389
28.
Awad
,
L. N.
,
Hsiao
,
H.
, and
Binder-Macleod
,
S. A.
,
2020
, “
Central Drive to the Paretic Ankle Plantarflexors Affects the Relationship Between Propulsion and Walking Speed After Stroke
,”
J. Neurol. Phys. Ther.
,
44
(
1
), pp.
42
48
.10.1097/NPT.0000000000000299
29.
Dong
,
H.
,
Hou
,
J.
,
Song
,
Z.
,
Xu
,
R.
,
Meng
,
L.
, and
Ming
,
D.
,
2022
, “
An Adaptive Reflexive Control Strategy for Walking Assistance System Based on Functional Electrical Stimulation
,”
Front. Neurosci.
,
16
, p.
944291
.10.3389/fnins.2022.944291
30.
Donlin
,
M. C.
, and
Higginson
,
J. S.
,
2024
, “
Adaptive Functional Electrical Stimulation Delivers Stimulation Amplitudes Based on Real-Time Gait Biomechanics
,”
ASME J. Med. Devices
,
18
(
2
), p.
021002
.10.1115/1.4065479
31.
Ray
,
N. T.
,
Reisman
,
D. S.
, and
Higginson
,
J. S.
,
2020
, “
Walking Speed Changes in Response to User-Driven Treadmill Control After Stroke
,”
J. Biomech.
,
101
, p.
109643
.10.1016/j.jbiomech.2020.109643
32.
Ray
,
N. T.
,
Knarr
,
B. A.
, and
Higginson
,
J. S.
,
2018
, “
Walking Speed Changes in Response to Novel User-Driven Treadmill Control
,”
J. Biomech.
,
78
, pp.
143
149
.10.1016/j.jbiomech.2018.07.035
33.
Kesar
,
T. M.
,
Perumal
,
R.
,
Jancosko
,
A.
,
Reisman
,
D. S.
,
Rudolph
,
K. S.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2010
, “
Novel Patterns of Functional Electrical Stimulation Have an Immediate Effect on Dorsiflexor Muscle Function During Gait for People Poststroke
,”
Phys. Ther.
,
90
(
1
), pp.
55
66
.10.2522/ptj.20090140
34.
Hakansson
,
N. A.
,
Kesar
,
T. M.
,
Reisman
,
D. S.
,
Binder-Macleod
,
S. A.
, and
Higginson
,
J. S.
,
2011
, “
Effects of Fast Functional Electrical Stimulation Gait Training on Mechanical Recovery in Poststroke Gait
,”
Artif. Organs
,
35
(
3
), pp.
217
220
.10.1111/j.1525-1594.2011.01215.x
35.
Kerrigan
,
D. C.
,
Todd
,
M. K.
, and
Croce
,
U. D.
,
1998
, “
Gender Differences in Joint Biomechanics During Walking Normative Study in Young Adults
,”
Am. J. Phys. Med. Rehabil.
,
77
(
1
), pp.
2
7
.10.1097/00002060-199801000-00002
36.
Balaban
,
B.
, and
Tok
,
F.
,
2014
, “
Gait Disturbances in Patients With Stroke
,”
Phys. Med. Rehabil.
,
6
(
7
), pp.
635
642
.10.1016/j.pmrj.2013.12.017
37.
Burdett
,
R.
,
Borello-France
,
D.
,
Blatchly
,
C.
, and
Potter
,
C.
,
2016
, “
Gait Comparison of Subjects With Hemiplegia Walking Unbraced, With Ankle-Foot Orthosis, and With Air-Stirrup® Brace
,”
Phys. Ther.
,
68
(
8
), pp.
1197
1203
.10.1093/ptj/68.8.1197
38.
Olney
,
S. J.
, and
Richards
,
C.
,
1996
, “
Hemiparetic Gait Following Stroke. Part I: Characteristics
,”
Gait Posture
,
4
(
2
), pp.
136
148
.10.1016/0966-6362(96)01063-6
39.
Awad
,
L. N.
,
Kesar
,
T. M.
,
Reisman
,
D.
, and
Binder-Macleod
,
S. A.
,
2013
, “
Effects of Repeated Treadmill Testing and Electrical Stimulation on Post-Stroke Gait Kinematics
,”
Gait Posture
,
37
(
1
), pp.
67
71
.10.1016/j.gaitpost.2012.06.001
40.
McGraw
,
K. O.
, and
Wong
,
S. P.
,
1992
, “
A Common Language Effect Size Statistic
,”
Psychol. Bull.
,
111
(
2
), pp.
361
365
.10.1037/0033-2909.111.2.361
41.
Kempski
,
K. M.
,
Ray
,
N. T.
,
Knarr
,
B. A.
, and
Higginson
,
J. S.
,
2019
, “
Dynamic Structure of Variability in Joint Angles and Center of Mass Position During User-Driven Treadmill Walking
,”
Gait Posture
,
71
, pp.
241
244
.10.1016/j.gaitpost.2019.04.031
42.
Donlin
,
M. C.
,
Pariser
,
K. M.
,
Downer
,
K. E.
, and
Higginson
,
J. S.
,
2022
, “
Adaptive Treadmill Walking Encourages Persistent Propulsion
,”
Gait Posture
,
93
, pp.
246
251
.10.1016/j.gaitpost.2022.02.017
43.
Wonsetler
,
E. C.
, and
Bowden
,
M. G.
,
2017
, “
A Systematic Review of Mechanisms of Gait Speed Change Post-Stroke. Part 1: Spatiotemporal Parameters and Asymmetry Ratios
,”
Top. Stroke Rehabil.
,
24
(
6
), pp.
435
446
.10.1080/10749357.2017.1285746
44.
Hsiao
,
H.
,
Knarr
,
B. A.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2015
, “
Mechanisms to Increase Propulsive Force for Individuals Poststroke
,”
J. NeuroEng. Rehabil.
,
12
(
1
), Article No. 40.10.1186/s12984-015-0030-8
45.
Perry
,
J.
,
Garrett
,
M.
,
Gronley
,
J. K.
, and
Mulroy
,
S. J.
,
1995
, “
Classification of Walking Handicap in the Stroke Population
,”
Stroke
,
26
(
6
), pp.
982
989
.10.1161/01.STR.26.6.982
46.
Lewek
,
M. D.
, and
Sykes
,
R.
,
2019
, “
Minimal Detectable Change for Gait Speed Depends on Baseline Speed in Individuals With Chronic Stroke
,”
J. Neurol. Phys. Ther.
,
43
(
2
), pp.
122
127
.10.1097/NPT.0000000000000257
47.
van de Port
,
I. G.
,
Kwakkel
,
G.
, and
Lindeman
,
E.
,
2008
, “
Community Ambulation in Patients With Chronic Stroke: How Is It Related to Gait Speed?
,”
J. Rehabil. Med.
,
40
(
1
), pp.
23
27
.10.2340/16501977-0114
48.
Patterson
,
K. K.
,
Parafianowicz
,
I.
,
Danells
,
C. J.
,
Closson
,
V.
,
Verrier
,
M. C.
,
Staines
,
W. R.
,
Black
,
S. E.
, and
McIlroy
,
W. E.
,
2008
, “
Gait Asymmetry in Community-Ambulating Stroke Survivors
,”
Arch. Phys. Med. Rehabil.
,
89
(
2
), pp.
304
310
.10.1016/j.apmr.2007.08.142
49.
Kesar
,
T. M.
,
Binder-Macleod
,
S. A.
,
Hicks
,
G. E.
, and
Reisman
,
D. S.
,
2011
, “
Minimal Detectable Change for Gait Variables Collected During Treadmill Walking in Individuals Post-Stroke
,”
Gait Posture
,
33
(
2
), pp.
314
317
.10.1016/j.gaitpost.2010.11.024
50.
Tilson
,
J. K.
,
Sullivan
,
K. J.
,
Cen
,
S. Y.
,
Rose
,
D. K.
,
Koradia
,
C. H.
,
Azen
,
S. P.
, and
Duncan
,
P. W.
, and
for the Locomotor Experience Applied Post Stroke (LEAPS) Investigative Team
,
2010
, “
Meaningful Gait Speed Improvement During the First 60 Days Poststroke: Minimal Clinically Important Difference
,”
Phys. Ther.
,
90
(
2
), pp.
196
208
.10.2522/ptj.20090079
51.
Chui
,
K.
,
Hood
,
E.
, and
Klima
,
D.
,
2012
, “
Meaningful Change in Walking Speed
,”
Top. Geriatr. Rehabil.
,
28
(
2
), pp.
97
103
.10.1097/TGR.0b013e3182510195
52.
Bohannon
,
R. W.
, and
Glenney
,
S. S.
,
2014
, “
Minimal Clinically Important Difference for Change in Comfortable Gait Speed of Adults With Pathology: A Systematic Review
,”
J. Eval. Clin. Pract.
,
20
(
4
), pp.
295
300
.10.1111/jep.12158
53.
Burke
,
E.
,
Dodakian
,
L.
,
See
,
J.
,
McKenzie
,
A.
,
Riley
,
J. D.
,
Le
,
V.
, and
Cramer
,
S. C.
,
2014
, “
A Multimodal Approach to Understanding Motor Impairment and Disability After Stroke
,”
J. Neurol.
,
261
(
6
), pp.
1178
1186
.10.1007/s00415-014-7341-8
54.
Hsiao
,
H.
,
Knarr
,
B. A.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2015
, “
The Relative Contribution of Ankle Moment and Trailing Limb Angle to Propulsive Force During Gait
,”
Human Mov. Sci.
,
39
, pp.
212
221
.10.1016/j.humov.2014.11.008
55.
Kepple
,
T. M.
,
Siegel
,
K. L.
, and
Stanhope
,
S. J.
,
1997
, “
Relative Contributions of the Lower Extremity Joint Moments to Forward Progression and Support During Gait
,”
Gait Posture
,
6
(
1
), pp.
1
8
.10.1016/S0966-6362(96)01094-6
56.
Parthasarathy
,
A.
,
V.n
,
M.
, and
Talasila
,
V.
,
2020
, “
Forecasting a Gait Cycle Parameter Region to Enable Optimal FES Triggering
,”
IFAC-PapersOnLine
,
53
(
1
), pp.
232
239
.10.1016/j.ifacol.2020.06.040
57.
Chen
,
G.
,
Ma
,
L.
,
Song
,
R.
,
Li
,
L.
,
Wang
,
X.
, and
Tong
,
K.
,
2018
, “
Speed-Adaptive Control of Functional Electrical Stimulation for Dropfoot Correction
,”
J. NeuroEng. Rehabil.
,
15
(
1
), Article No. 98.10.1186/s12984-018-0448-x
58.
Skelly
,
M. M.
, and
Chizeck
,
H. J.
,
2001
, “
Real-Time Gait Event Detection for Paraplegic FES Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
9
(
1
), pp.
59
68
.10.1109/7333.918277
59.
Awad
,
L. N.
,
Reisman
,
D. S.
,
Wright
,
T. R.
,
Roos
,
M. A.
, and
Binder-Macleod
,
S. A.
,
2014
, “
Maximum Walking Speed Is a Key Determinant of Long Distance Walking Function After Stroke
,”
Top. Stroke Rehabil.
,
21
(
6
), pp.
502
509
.10.1310/tsr2106-502
You do not currently have access to this content.