Abstract

Heavy load carriage is associated with musculoskeletal overuse injury, particularly in the lumbar spine. In addition, steep walking slopes and heavy backpacks separately require adaptation of torso kinematics, but the combined effect of sloped walking and heavy backpack loads on lumbar joint contact forces is unclear. Backpacks with hip belt attachments can reduce pressure under the shoulder straps; however, it is unknown if wearing a hip belt reduces lumbar spine forces. We used a musculoskeletal modeling and simulation approach to quantify peak and impulsive L1L2 and L4L5 lumbar joint contact forces in the anterior/posterior shear and compressive directions during walking on 0 deg and ±10 deg slopes, with no backpack and with 40% body weight backpack load using two different backpack configurations (hip belt assisted and shoulder-borne). Both walking slope and backpack load significantly affected shear and compressive peak and impulsive forces. The largest peak shear and compressive forces of 1.57 and 5.23 body weights, respectively, exceed recommended limits and were observed during uphill walking with shoulder-borne loads. However, only impulsive force results revealed differences due to the backpack configuration, and this effect depended on walking slope. During downhill walking only, the hip belt-assisted configuration resulted compressive impulses lower than during shoulder borne by 0.25 body weight seconds for both L1L2 and L4L5. These results indicate that walking uphill with heavy loads causes high shear and compressive lumbar forces that may increase overuse injury risk. In addition, our results suggest it is especially important to wear a hip belt when walking downhill.

References

1.
U.S. Army Public Health Center
,
2018
,
2017 Health Of The Force Report
,
Aberdeen Proving
Ground, MD
.
2.
Knapik
,
J. J.
,
Graham
,
B. S.
,
Rieger
,
J.
,
Steelman
,
R.
, and
Pendergrass
,
T.
,
2013
, “
Activities Associated With Injuries in Initial Entry Training
,”
Mil. Med.
,
178
(
5
), pp.
500
506
.10.7205/MILMED-D-12-00507
3.
Knapik
,
J. J.
,
Jones
,
S. B.
,
Darakjy
,
S.
,
Hauret
,
K. G.
,
Bullock
,
L. T. C. S. H.
,
Sharp
,
M. A.
, and
Jones
,
B. H.
,
2007
, “
Injury Rates and Injury Risk Factors Among U.S. Army Wheel Vehicle Mechanics
,”
Mil. Med.
,
172
(
9
), pp.
988
996
.10.7205/MILMED.172.9.988
4.
Roy
,
T. C.
,
Piva
,
S. R.
,
Christiansen
,
B. C.
,
Lesher
,
J. D.
,
Doyle
,
P. M.
,
Waring
,
R. M.
,
Irrgang
,
J. J.
,
Moore
,
C. G.
,
Brininger
,
T. L.
, and
Sharp
,
M. A.
,
2016
, “
Heavy Loads and Lifting Are Risk Factors for Musculoskeletal Injuries in Deployed Female Soldiers
,”
Mil. Med.
,
181
(
11
), pp.
e1476
e1483
.10.7205/MILMED-D-15-00435
5.
Schuh-Renner
,
A.
,
Grier
,
T. L.
,
Canham-Chervak
,
M.
,
Hauschild
,
V. D.
,
Roy
,
T. C.
,
Fletcher
,
J.
, and
Jones
,
B. H.
,
2017
, “
Risk Factors for Injury Associated With Low, Moderate, and High Mileage Road Marching in a U.S. Army Infantry Brigade
,”
J. Sci. Med. Sport
,
20
, pp.
S28
S33
.10.1016/j.jsams.2017.07.027
6.
Roy
,
T. C.
,
Knapik
,
J. J.
,
Ritland
,
B. M.
,
Murphy
,
N.
, and
Sharp
,
M. A.
,
2012
, “
Risk Factors for Musculoskeletal Injuries for Soldiers Deployed to Afghanistan
,”
Aviat. Space Environ. Med.
,
83
(
11
), pp.
1060
1066
.10.3357/ASEM.3341.2012
7.
Knapik
,
J.
, and
Reynolds
,
K.
,
2010
,
Load Carriage in Military Operations: A Review of Historical, Biomechanical and Medical Aspects
,
Borden Institute
,
Washington, DC
.
8.
Lenton
,
G. K.
,
Bishop
,
P. J.
,
Saxby
,
D. J.
,
Doyle
,
T. L. A.
,
Pizzolato
,
C.
,
Billing
,
D.
, and
Lloyd
,
D. G.
,
2018
, “
Tibiofemoral Joint Contact Forces Increase With Load Magnitude and Walking Speed but Remain Almost Unchanged With Different Types of Carried Load
,”
PLoS One
,
13
(
11
), p.
e0206859
.10.1371/journal.pone.0206859
9.
Ramsay
,
J. W.
,
Hancock
,
C. L.
,
O'Donovan
,
M. P.
, and
Brown
,
T. N.
,
2016
, “
Soldier-Relevant Body Borne Loads Increase Knee Joint Contact Force During a Run-to-Stop Maneuver
,”
J. Biomech.
,
49
(
16
), pp.
3868
3874
.10.1016/j.jbiomech.2016.10.022
10.
Hauschild
,
V. D.
,
Richardson
,
M.
,
Lee
,
T.
,
Hauret
,
K.
, and
Jones
,
B. H.
,
2018
, “
Application of the Taxonomy of Injuries: Analysis of Army Recruit Injuries, CY 2016
,” Aberdeen Proving Ground, MD, Public Health Information Paper No. 12-01-0118.
11.
Attwells
,
R. L.
,
Birrell
,
S. A.
,
Hooper
,
R. H.
, and
Mansfield
,
N. J.
,
2006
, “
Influence of Carrying Heavy Loads on Soldiers' Posture, Movements and Gait
,”
Ergonomics
,
49
(
14
), pp.
1527
1537
.10.1080/00140130600757237
12.
Krupenevich
,
R.
,
Rider
,
P.
,
Domire
,
Z.
, and
DeVita
,
P.
,
2015
, “
Males and Females Respond Similarly to Walking with a Standardized, Heavy Load
,”
Mil. Med.
,
180
(
9
), pp.
994
1000
.10.7205/MILMED-D-14-00499
13.
Seay
,
J. F.
,
Fellin
,
R. E.
,
Sauer
,
S. G.
,
Frykman
,
P. N.
, and
Bensel
,
C. K.
,
2014
, “
Lower Extremity Biomechanical Changes Associated With Symmetrical Torso Loading During Simulated Marching
,”
Mil. Med.
,
179
(
1
), pp.
85
91
.10.7205/MILMED-D-13-00090
14.
Wang
,
H.
,
Frame
,
J.
,
Ozimek
,
E.
,
Leib
,
D.
, and
Dugan
,
E. L.
,
2013
, “
The Effects of Load Carriage and Muscle Fatigue on Lower Extremity Joint Mechanics
,”
Res. Q. Exercise Sport
,
84
(
3
), pp.
305
312
.10.1080/02701367.2013.814097
15.
U.S. Army Public Health Center
,
2020
,
2019 Health of the Force
, U.S. Army Public Health Center,
Aberdeen Proving Ground, MD
.
16.
Goh
,
J. H.
,
Thambyah
,
A.
, and
Bose
,
K.
,
1998
, “
Effects of Varying Backpack Loads on Peak Forces in the Lumbosacral Spine During Walking
,”
Clin. Biomech.
,
13
(
1
), pp.
S26
S31
.10.1016/S0268-0033(97)00071-5
17.
Muslim
,
K.
, and
Nussbaum
,
M. A.
,
2016
, “
Traditional Posterior Load Carriage Effects of Load Mass and Size on Torso Kinematics Kinetics Muscle Activity and Movement Stability
,”
Ergonomics
,
59
(
1
), pp.
99
111
.10.1080/00140139.2015.1053538
18.
Harman
,
E.
,
Han
,
K. H.
,
Frykman
,
P.
, and
Pandorf
,
C.
,
2000
, “
The Effect of Backpack Weight on the Biomechanics of Load Carriage
,”
U.S. Army Medical Research Institute of Environmental Medicine
,
Natick, MA
, Report No.
T01-16.
https://www.researchgate.net/publication/235127918_The_Effects_of_backpack_weight_on_the_biomechanics_of_load_carriage#:~:text=In%20several%20studies%20%28Cottalorda%20et,with%20walking%20without%20a%20backpack.
19.
Qu
,
X.
, and
Yeo
,
J. C.
,
2011
, “
Effects of Load Carriage and Fatigue on Gait Characteristics
,”
J. Biomech.
,
44
(
7
), pp.
1259
1263
.10.1016/j.jbiomech.2011.02.016
20.
Kimel-Naor
,
S.
,
Gottlieb
,
A.
, and
Plotnik
,
M.
,
2017
, “
The Effect of Uphill and Downhill Walking on Gait Parameters: A Self-Paced Treadmill Study
,”
J. Biomech.
,
60
, pp.
142
149
.10.1016/j.jbiomech.2017.06.030
21.
Leroux
,
A.
,
Fung
,
J.
, and
Barbeau
,
H.
,
2002
, “
Postural Adaptation to Walking on Inclined Surfaces: I. Normal Strategies
,”
Gait Posture
,
15
(
1
), pp.
64
74
.10.1016/S0966-6362(01)00181-3
22.
Stefanakis
,
M.
,
Luo
,
J.
,
Pollintine
,
P.
,
Dolan
,
P.
, and
Adams
,
M. A.
,
2014
, “
ISSLS Prize Winner: Mechanical Influences in Progressive Intervertebral Disc Degeneration
,”
Spine
,
39
(
17
), pp.
1365
1372
.10.1097/BRS.0000000000000389
23.
LaFiandra
,
M.
, and
Harman
,
E.
,
2004
, “
The Distribution of Forces Between the Upper and Lower Back During Load Carriage
,”
Med. Sci. Sports Exercise
,
36
(
3
), pp.
460
467
.10.1249/01.MSS.0000117113.77904.46
24.
Lenton
,
G. K.
,
Doyle
,
T. L. A.
,
Saxby
,
D. J.
,
Billing
,
D.
,
Higgs
,
J.
, and
Lloyd
,
D. G.
,
2018
, “
Integrating a Hip Belt With Body Armour Reduces the Magnitude and Changes the Location of Shoulder Pressure and Perceived Discomfort in Soldiers
,”
Ergonomics
,
61
(
4
), pp.
566
575
.10.1080/00140139.2017.1381278
25.
Wettenschwiler
,
P. D.
,
Lorenzetti
,
S.
,
Ferguson
,
S. J.
,
Stämpfli
,
R.
,
Aiyangar
,
A. K.
,
Rossi
,
R. M.
, and
Annaheim
,
S.
,
2017
, “
Loading of the Lumbar Spine During Backpack Carriage
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
5
), pp.
558
565
.10.1080/10255842.2016.1261849
26.
Sturdy
,
J. T.
,
Sessoms
,
P. H.
, and
Silverman
,
A. K.
,
2021
, “
A Backpack Load Sharing Model to Evaluate Lumbar and Hip Joint Contact Forces During Shoulder Borne and Hip Belt Assisted Load Carriage
,”
Appl. Ergon.
,
90
, p.
103277
.10.1016/j.apergo.2020.103277
27.
Li
,
S. S. W.
,
Zheng
,
Y. P.
, and
Chow
,
D. H. K.
,
2019
, “
Changes of Lumbosacral Joint Compression Force Profile When Walking Caused by Backpack Loads
,”
Hum. Mov. Sci.
,
66
, pp.
164
172
.10.1016/j.humov.2019.04.006
28.
Gómez
,
L.
,
Díaz
,
C. A.
,
Orozco
,
G. A.
, and
García
,
J. J.
,
2018
, “
Dynamic Analysis of Forces in the Lumbar Spine During Bag Carrying
,”
Int. J. Occup. Saf. Ergon.
,
24
(
4
), pp.
605
613
.10.1080/10803548.2017.1352224
29.
Zhao
,
G.
,
Wang
,
H.
,
Wang
,
L.
,
Ibrahim
,
Y.
,
Wan
,
Y.
,
Sun
,
J.
,
Yuan
,
S.
, and
Liu
,
X.
,
2023
, “
The Biomechanical Effects of Different Bag-Carrying Styles on Lumbar Spine and Paraspinal Muscles: A Combined Musculoskeletal and Finite Element Study
,”
Orthop. Surg.
,
15
(
1
), pp.
315
327
.10.1111/os.13573
30.
Norman
,
R.
,
Wells
,
R.
,
Neumann
,
P.
,
Frank
,
J.
,
Shannon
,
H.
,
Kerr
,
M.
,
Beaton
,
D. E.
, et al.,
1998
, “
A Comparison of Peak versus Cumulative Physical Work Exposure Risk Factors for the Reporting of Low Back Pain in the Automotive Industry
,”
Clin. Biomech.
,
13
(
8
), pp.
561
573
.10.1016/S0268-0033(98)00020-5
31.
Kerr
,
M. S.
,
Frank
,
J. W.
,
Shannon
,
H. S.
,
Norman
,
R. W. K.
,
Wells
,
R. P.
,
Neumann
,
W. P.
, and
Bombardier
,
C.
, and
Ontario Universities Back Pain Study Group
,
2001
, “
Biomechanical and Psychosocial Risk Factors for Low Back Pain at Work
,”
Am. J. Public Health
,
91
(
7
), pp.
1069
1075
.10.2105/ajph.91.7.1069
32.
Yoganandan
,
N.
,
Maiman
,
D. J.
,
Pintar
,
F.
,
Ray
,
G.
,
Myklebust
,
J. B.
,
Sances
,
A.
, Jr.
, and
Larson
,
S. J.
,
1988
, “
Microtrauma in the Lumbar Spine: A Cause of Low Back Pain
,”
Neurosurgery
,
23
(
2
), pp.
162
168
.10.1227/00006123-198808000-00006
33.
Desmoulin
,
G. T.
,
Pradhan
,
V.
, and
Milner
,
T. E.
,
2020
, “
Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics
,”
Spine
,
45
(
8
), pp.
E457
E464
.10.1097/BRS.0000000000003291
34.
Schmidt
,
H.
,
Kettler
,
A.
,
Heuer
,
F.
,
Simon
,
U.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Intradiscal Pressure, Shear Strain, and Fiber Strain in the Intervertebral Disc Under Combined Loading
,”
Spine
,
32
(
7
), pp.
748
755
.10.1097/01.brs.0000259059.90430.c2
35.
Actis
,
J. A.
,
Nolasco
,
L. A.
,
Gates
,
D. H.
, and
Silverman
,
A. K.
,
2018
, “
Lumbar Loads and Trunk Kinematics in People With a Transtibial Amputation During Sit-to-Stand
,”
J. Biomech.
,
69
, pp.
1
9
.10.1016/j.jbiomech.2017.12.030
36.
Beaucage-Gauvreau
,
E.
,
Brandon
,
S. C. E.
,
Robertson
,
W. S. P.
,
Fraser
,
R.
,
Freeman
,
B. J. C.
,
Graham
,
R. B.
,
Thewlis
,
D.
, and
Jones
,
C. F.
,
2020
, “
A Braced Arm-to-Thigh (BATT) Lifting Technique Reduces Lumbar Spine Loads in Healthy and Low Back Pain Participants
,”
J. Biomech.
,
100
, p.
109584
.10.1016/j.jbiomech.2019.109584
37.
Raabe
,
M. E.
, and
Chaudhari
,
A. M. W.
,
2016
, “
An Investigation of Jogging Biomechanics Using the Full-Body Lumbar Spine Model: Model Development and Validation
,”
J. Biomech.
,
49
(
7
), pp.
1238
1243
.10.1016/j.jbiomech.2016.02.046
38.
Piazza
,
S. J.
,
2006
, “
Muscle-Driven Forward Dynamic Simulations for the Study of Normal and Pathological Gait
,”
J. Neuroeng. Rehabil.
,
3
(
5
).10.1186/1743-0003-3-5
39.
Lay
,
A. N.
,
Hass
,
C. J.
, and
Gregor
,
R. J.
,
2006
, “
The Effects of Sloped Surfaces on Locomotion: A Kinematic and Kinetic Analysis
,”
J. Biomech.
,
39
(
9
), pp.
1621
1628
.10.1016/j.jbiomech.2005.05.005
40.
Franz
,
J. R.
,
Lyddon
,
N. E.
, and
Kram
,
R.
,
2012
, “
Mechanical Work Performed by the Individual Legs During Uphill and Downhill Walking
,”
J. Biomech.
,
45
(
2
), pp.
257
262
.10.1016/j.jbiomech.2011.10.034
41.
DeVita
,
P.
,
Helseth
,
J.
, and
Hortobagyi
,
T.
,
2007
, “
Muscles Do More Positive Than Negative Work in Human Locomotion
,”
J. Exp. Biol.
,
210
(
19
), pp.
3361
3373
.10.1242/jeb.003970
42.
Lenton
,
G. K.
,
Doyle
,
T. L. A.
,
Saxby
,
D. J.
, and
Lloyd
,
D. G.
,
2017
, “
An Alternative Whole-Body Marker Set to Accurately and Reliably Quantify Joint Kinematics During Load Carriage
,”
Gait Posture
,
54
, pp.
318
324
.10.1016/j.gaitpost.2017.04.002
43.
Hermens
,
H. J.
,
Freriks
,
B.
,
Merletti
,
R.
,
Stegeman
,
D.
,
Blok
,
J.
,
Rau
,
G.
,
Disselhorst-Klug
,
C.
, and
Hägg
,
G.
,
1999
, “
European Recommendations for Surface ElectroMyoGraphy
,”
Roessingh Res. Dev.
,
8
(
2
), pp.
8
11
.http://www.seniam.org/pdf/contents8.PDF
44.
Ng
,
J. K. F.
,
Kippers
,
V.
,
Parnianpour
,
M.
, and
Richardson
,
C. A.
,
2002
, “
EMG Activity Normalization for Trunk Muscles in Subjects With and Without Back Pain
,”
Med. Sci. Sports Exercise
,
34
(
7
), pp.
1082
1086
.10.1097/00005768-200207000-00005
45.
Lai
,
A. K. M.
,
Arnold
,
A. S.
, and
Wakeling
,
J. M.
,
2017
, “
Why Are Antagonist Muscles Co-Activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks
,”
Ann. Biomed. Eng.
,
45
(
12
), pp.
2762
2774
.10.1007/s10439-017-1920-7
46.
Rajagopal
,
A.
,
Dembia
,
C.
,
DeMers
,
M.
,
Delp
,
D.
,
Hicks
,
J.
, and
Delp
,
S.
,
2016
, “
Full Body Musculoskeletal Model for Muscle- Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
47.
Christophy
,
M.
,
Senan
,
N. A. F.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2012
, “
A Musculoskeletal Model for the Lumbar Spine
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
19
34
.10.1007/s10237-011-0290-6
48.
Senteler
,
M.
,
Weisse
,
B.
,
Rothenfluh
,
D. A.
, and
Snedeker
,
J. G.
,
2016
, “
Intervertebral Reaction Force Prediction Using an Enhanced Assembly of OpenSim Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
5
), pp.
538
548
.10.1080/10255842.2015.1043906
49.
Lu
,
T. W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.10.1016/S0021-9290(98)00158-4
50.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.10.1016/j.jbiomech.2008.10.012
51.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
, et al.,
2018
, “
OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput. Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
52.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
53.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.10.1115/1.4029304
54.
Sturdy
,
J. T.
,
Silverman
,
A. K.
, and
Pickle
,
N. T.
,
2022
, “
Automated Optimization of Residual Reduction Algorithm Parameters in Opensim
,”
J. Biomech.
,
137
, p.
111087
.10.1016/j.jbiomech.2022.111087
55.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
56.
Sturdy
,
J. T.
,
Sessoms
,
P. H.
, and
Silverman
,
A. K.
,
2024
, “
Psoas Force Recruitment in Full-Body Musculoskeletal Movement Simulations Is Restored With a Geometrically Informed Cost Function Weighting
,”
J. Biomech.
,
168
, p.
112130
.10.1016/j.jbiomech.2024.112130
57.
Sturdy
,
J. T.
,
Rizeq
,
H. N.
,
Silder
,
A.
,
Sessoms
,
P. H.
, and
Silverman
,
A. K.
,
2024
, “
Concentric and Eccentric Hip Musculotendon Work Depends on Backpack Loads and Walking Slopes
,”
J. Biomech.
,
163
, p.
111942
.10.1016/j.jbiomech.2024.111942
58.
Beaucage-Gauvreau
,
E.
,
Robertson
,
W. S. P.
,
Brandon
,
S. C. E.
,
Fraser
,
R.
,
Freeman
,
B. J. C.
,
Graham
,
R. B.
,
Thewlis
,
D.
, and
Jones
,
C. F.
,
2019
, “
Validation of an OpenSim Full-Body Model With Detailed Lumbar Spine for Estimating Lower Lumbar Spine Loads During Symmetric and Asymmetric Lifting Tasks
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
5
), pp.
451
464
.10.1080/10255842.2018.1564819
59.
Alemi
,
M. M.
,
Banks
,
J. J.
,
Lynch
,
A. C.
,
Allaire
,
B. T.
,
Bouxsein
,
M. L.
, and
Anderson
,
D. E.
,
2023
, “
EMG Validation of a Subject-Specific Thoracolumbar Spine Musculoskeletal Model During Dynamic Activities in Older Adults
,”
Ann. Biomed. Eng.
,
51
(
10
), pp.
2313
2322
.10.1007/s10439-023-03273-3
60.
Davis
,
R. A.
,
1994
, “
A Long-Term Outcome Analysis of 984 Surgically Treated Herniated Lumbar Discs
,”
J. Neurosurg.
,
80
(
3
), pp.
415
421
.10.3171/jns.1994.80.3.0415
61.
Jacobsen
,
S.
,
Sonne-Holm
,
S.
,
Rovsing
,
H.
,
Monrad
,
H.
, and
Gebuhr
,
P.
,
2007
, “
Degenerative Lumbar Spondylolisthesis: An Epidemiological Perspective - The Copenhagen Osteoarthritis Study
,”
Spine
,
32
(
1
), pp.
120
125
.10.1097/01.brs.0000250979.12398.96
62.
Bates
,
D.
,
Mächler
,
M.
,
Bolker
,
B. M.
, and
Walker
,
S. C.
,
2015
, “
Fitting Linear Mixed-Effects Models Using Lme4
,”
J. Stat. Software
,
67
(
1
), pp.
1
48
.10.18637/jss.v067.i01
63.
Sengupta
,
D. K.
, and
Herkowitz
,
H. N.
,
2005
, “
Degenerative Spondylolisthesis: Review of Current Trends and Controversies
,”
Spine
,
30
, pp.
S71
S81
.10.1097/01.brs.0000155579.88537.8e
64.
Roberts
,
S.
,
Gardner
,
C.
,
Jiang
,
Z.
,
Abedi
,
A.
,
Buser
,
Z.
, and
Wang
,
J. C.
,
2021
, “
Analysis of Trends in Lumbar Disc Degeneration Using Kinematic MRI
,”
Clin. Imaging
,
79
, pp.
136
141
.10.1016/j.clinimag.2021.04.028
65.
Arshad
,
R.
,
Zander
,
T.
,
Dreischarf
,
M.
, and
Schmidt
,
H.
,
2016
, “
Influence of Lumbar Spine Rhythms and Intra-Abdominal Pressure on Spinal Loads and Trunk Muscle Forces During Upper Body Inclination
,”
Med. Eng. Phys.
,
38
(
4
), pp.
333
338
.10.1016/j.medengphy.2016.01.013
66.
Honegger
,
J. D.
,
Actis
,
J. A.
,
Gates
,
D. H.
,
Silverman
,
A. K.
,
Munson
,
A. H.
, and
Petrella
,
A. J.
,
2021
, “
Development of a Multiscale Model of the Human Lumbar Spine for Investigation of Tissue Loads in People With and Without a Transtibial Amputation During Sit-to-Stand
,”
Biomech. Model. Mechanobiol.
,
20
(
1
), pp.
339
358
.10.1007/s10237-020-01389-2
67.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
68.
Waters
,
T. R.
,
Putz-Anderson
,
V.
,
Garg
,
A.
, and
Fine
,
L. J.
,
1993
, “
Revised NIOSH Equation for the Design and Evaluation of Manual Lifting Tasks
,”
Ergonomics
,
36
(
7
), pp.
749
776
.10.1080/00140139308967940
69.
Gallagher
,
S.
, and
Marras
,
W. S.
,
2012
, “
Tolerance of the Lumbar Spine to Shear: A Review and Recommended Exposure Limits
,”
Clin. Biomech.
,
27
(
10
), pp.
973
978
.10.1016/j.clinbiomech.2012.08.009
You do not currently have access to this content.