Abstract

A criterion characterizing the combined neurotoxicity of amyloid beta and tau oligomers is suggested. A mathematical model for calculating the value of this criterion during senile plaque and neurofibrillary tangle (NFT) formation is proposed. Computations show that for physiologically relevant parameter values, the value of the criterion increases approximately linearly with time. Once neurofibrillary tangles begin forming in addition to senile plaques, there is an increase in the slope characterizing the rate at which the criterion increases. The critical value of the criterion at which a neuron dies is estimated. Unless the production rates of amyloid beta and tau monomers are very large, computations predict that for the accumulated toxicity to reach the critical value, the neural machinery responsible for the degradation of amyloid beta and tau monomers and aggregates must become dysfunctional. The value of the criterion after 20 years of the aggregation process is strongly influenced by the deposition rates of amyloid beta and tau oligomers into senile plaques and NFTs. This suggests that deposition of amyloid beta and tau oligomers into senile plaques and NFTs may reduce accumulated toxicity by sequestering more toxic oligomeric species into less toxic insoluble aggregates.

References

1.
Hardy
,
J.
,
2006
, “
A Hundred Years of Alzheimer's Disease Research
,”
Neuron
,
52
(
1
), pp.
3
13
.10.1016/j.neuron.2006.09.016
2.
Maqbool
,
M.
,
Mobashir
,
M.
, and
Hoda
,
N.
,
2016
, “
Pivotal Role of Glycogen Synthase Kinase-3: A Therapeutic Target for Alzheimer's Disease
,”
Eur. J. Med. Chem.
,
107
, pp.
63
81
.10.1016/j.ejmech.2015.10.018
3.
Hung
,
S.
, and
Fu
,
W.
,
2017
, “
Drug Candidates in Clinical Trials for Alzheimer's Disease
,”
J. Biomed. Sci.
,
24
, p.
47
.10.1186/s12929-017-0355-7
4.
Knopman
,
D. S.
,
Amieva
,
H.
,
Petersen
,
R. C.
,
Chételat
,
G.
,
Holtzman
,
D. M.
,
Hyman
,
B. T.
,
Nixon
,
R. A.
, and
Jones
,
D. T.
,
2021
, “
Alzheimer Disease
,”
Nat. Rev. Dis. Primers
,
7
(
1
), p.
33
.10.1038/s41572-021-00269-y
5.
Breijyeh
,
Z.
, and
Karaman
,
R.
,
2020
, “
Comprehensive Review on Alzheimer's Disease: Causes and Treatment
,”
Molecules
,
25
(
24
), p.
5789
.10.3390/molecules25245789
6.
Zhang
,
Y.
,
Chen
,
H.
,
Li
,
R.
,
Sterling
,
K.
, and
Song
,
W.
,
2023
, “
Amyloid β-Based Therapy for Alzheimer's Disease: Challenges, Successes and Future
,”
Signal Transduction Targeted Ther.
,
8
(
1
), p.
248
.10.1038/s41392-023-01484-7
7.
Korczyn
,
A. D.
, and
Grinberg
,
L. T.
,
2024
, “
Is Alzheimer Disease a Disease?
,”
Nat. Rev. Neurol.
,
20
(
4
), pp.
245
251
.10.1038/s41582-024-00940-4
8.
Chen
,
G.-F.
,
Xu
,
T.-H.
,
Yan
,
Y.
,
Zhou
,
Y.-R.
,
Jiang
,
Y.
,
Melcher
,
K.
, and
Xu
,
H. E.
,
2017
, “
Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development
,”
Acta Pharmacol. Sin.
,
38
(
9
), pp.
1205
1235
.10.1038/aps.2017.28
9.
Karran
,
E.
,
Mercken
,
M.
, and
De Strooper
,
B.
,
2011
, “
The Amyloid Cascade Hypothesis for Alzheimer's Disease: An Appraisal for the Development of Therapeutics
,”
Nat. Rev. Drug Discovery
,
10
(
9
), pp.
698
712
.10.1038/nrd3505
10.
Verma
,
M.
,
Vats
,
A.
, and
Taneja
,
V.
,
2015
, “
Toxic Species in Amyloid Disorders: Oligomers or Mature Fibrils
,”
Ann. Indian Acad. Neurol.
,
18
(
2
), pp.
138
145
.10.4103/0972-2327.144284
11.
Pichet Binette
,
A.
,
Gaiteri
,
C.
,
Wennström
,
M.
,
Kumar
,
A.
,
Hristovska
,
I.
,
Spotorno
,
N.
,
Salvadó
,
G.
, et al.,
2024
, “
Proteomic Changes in Alzheimer's Disease Associated With Progressive Aβ Plaque and Tau Tangle Pathologies
,”
Nat. Neurosci.
,
27
(
10
), pp.
1880
1891
.10.1038/s41593-024-01737-w
12.
Parra Bravo
,
C.
,
Naguib
,
S. A.
, and
Gan
,
L.
,
2024
, “
Cellular and Pathological Functions of Tau
,”
Nat. Rev. Mol. Cell Biol.
,
25
(
11
), pp.
845
864
.10.1038/s41580-024-00753-9
13.
Shin
,
W. S.
,
Di
,
J.
,
Cao
,
Q.
,
Li
,
B.
,
Seidler
,
P. M.
,
Murray
,
K. A.
,
Bitan
,
G.
, and
Jiang
,
L.
,
2019
, “
Amyloid β-Protein Oligomers Promote the Uptake of Tau Fibril Seeds Potentiating Intracellular Tau Aggregation
,”
Alzheimer's Res. Ther.
,
11
(
1
), p.
86
.10.1186/s13195-019-0541-9
14.
Colom-Cadena
,
M.
,
Davies
,
C.
,
Sirisi
,
S.
,
Lee
,
J.-E.
,
Simzer
,
E. M.
,
Tzioras
,
M.
,
Querol-Vilaseca
,
M.
, et al.,
2023
, “
Synaptic Oligomeric Tau in Alzheimer's Disease — A Potential Culprit in the Spread of Tau Pathology Through the Brain
,”
Neuron
,
111
(
14
), pp.
2170
2183
.10.1016/j.neuron.2023.04.020
15.
Zwang
,
T. J.
,
Sastre
,
E. D.
,
Wolf
,
N.
,
Ruiz-Uribe
,
N.
,
Woost
,
B.
,
Hoglund
,
Z.
,
Fan
,
Z.
, et al.,
2024
, “
Neurofibrillary Tangle-Bearing Neurons Have Reduced Risk of Cell Death in Mice With Alzheimer's Pathology
,”
Cell Rep.
,
43
(
8
), p.
114574
.10.1016/j.celrep.2024.114574
16.
Kuznetsov
,
A. V.
,
2024
, “
A Criterion Characterizing Accumulated Neurotoxicity of Aβ Oligomers in Alzheimer's Disease
,”
bioRxiv:2024.08.19.608707
.10.1101/2024.08.19.608707
17.
Kuznetsov
,
A. V.
,
2024
, “
Criterion for Assessing Accumulated Neurotoxicity of Alpha-Synuclein Oligomers in Parkinson's Disease
,”
bioRxiv:2024.09.23.614584
.10.1101/2024.09.23.614584
18.
Morris
,
A. M.
,
Watzky
,
M. A.
,
Agar
,
J. N.
, and
Finke
,
R. G.
,
2008
, “
Fitting Neurological Protein Aggregation Kinetic Data Via a 2-Step, Minimal/“Ockham's Razor” Model: The Finke-Watzky Mechanism of Nucleation Followed by Autocatalytic Surface Growth
,”
Biochemistry
,
47
(
8
), pp.
2413
2427
.10.1021/bi701899y
19.
Iashchishyn
,
I. A.
,
Sulskis
,
D.
,
Nguyen Ngoc
,
M.
,
Smirnovas
,
V.
, and
Morozova-Roche
,
L. A.
,
2017
, “
Finke-Watzky Two-Step Nucleation-Autocatalysis Model of S100A9 Amyloid Formation: Protein Misfolding as “Nucleation” Event
,”
ACS Chem. Neurosci.
,
8
(
10
), pp.
2152
2158
.10.1021/acschemneuro.7b00251
20.
Finke
,
R. G.
,
Watzky
,
M. A.
, and
Whitehead
,
C. B.
,
2020
, “
Response to “Particle Size is a Primary Determinant for Sigmoidal Kinetics of Nanoparticle Formation: A “Disproof” of the Finke–Watzky (F-W) Nanoparticle Nucleation and Growth Mechanism
,”
Chem. Mater.
,
32
(
8
), pp.
3657
3672
.10.1021/acs.chemmater.0c00780
21.
Hernández
,
F.
,
Ferrer
,
I.
,
Pérez
,
M.
,
Zabala
,
J. C.
,
del Rio
,
J. A.
, and
Avila
,
J.
,
2023
, “
Tau Aggregation
,”
Neuroscience
,
518
, pp.
64
69
.10.1016/j.neuroscience.2022.04.024
22.
Thacker
,
D.
,
Barghouth
,
M.
,
Bless
,
M.
,
Zhang
,
E.
, and
Linse
,
S.
,
2023
, “
Direct Observation of Secondary Nucleation Along the Fibril Surface of the Amyloid β 42 Peptide
,”
Proc. Natl. Acad. Sci.
,
120
(
25
), p.
e2220664120
.10.1073/pnas.2220664120
23.
Bentea
,
L.
,
Watzky
,
M. A.
, and
Finke
,
R. G.
,
2017
, “
Sigmoidal Nucleation and Growth Curves Across Nature Fit by the Finke-Watzky Model of Slow Continuous Nucleation and Autocatalytic Growth: Explicit Formulas for the Lag and Growth Times Plus Other Key Insights
,”
J. Phys. Chem. C
,
121
(
9
), pp.
5302
5312
.10.1021/acs.jpcc.6b12021
24.
Waters
,
J.
,
2010
, “
The Concentration of Soluble Extracellular Amyloid-Beta Protein in Acute Brain Slices From CRND8 Mice
,”
PLoS One
,
5
(
12
), p.
e15709
.10.1371/journal.pone.0015709
25.
Konzack
,
S.
,
Thies
,
E.
,
Marx
,
A.
,
Mandelkow
,
E.-M.
, and
Mandelkow
,
E.
,
2007
, “
Swimming Against the Tide: Mobility of the Microtubule-Associated Protein Tau in Neurons
,”
J. Neurosci.
,
27
(
37
), pp.
9916
9927
.10.1523/JNEUROSCI.0927-07.2007
26.
Bieschke
,
J.
,
Zhang
,
Q.
,
Powers
,
E. T.
,
Lerner
,
R. A.
, and
Kelly
,
J. W.
,
2005
, “
Oxidative Metabolites Accelerate Alzheimer's Amyloidogenesis by a Two-Step Mechanism, Eliminating the Requirement for Nucleation
,”
Biochemistry
,
44
(
13
), pp.
4977
4983
.10.1021/bi0501030
27.
Combs
,
B.
, and
Gamblin
,
T. C.
,
2012
, “
FTDP-17 Tau Mutations Induce Distinct Effects on Aggregation and Microtubule Interactions
,”
Biochemistry
,
51
(
43
), pp.
8597
8607
.10.1021/bi3010818
28.
Querol-Vilaseca
,
M.
,
Colom-Cadena
,
M.
,
Pegueroles
,
J.
,
Nuñez-Llaves
,
R.
,
Luque-Cabecerans
,
J.
,
Muñoz-Llahuna
,
L.
,
Andilla
,
J.
, et al.,
2019
, “
Nanoscale Structure of Amyloid-β Plaques in Alzheimer's Disease
,”
Sci. Rep.
,
9
(
1
), p.
5181
.10.1038/s41598-019-41443-3
29.
Raskatov
,
J. A.
,
2019
, “
What is the “Relevant” Amyloid β42 Concentration?
,”
ChemBioChem
,
20
(
13
), pp.
1725
1726
.10.1002/cbic.201900097
30.
Mandelkow
,
E. M.
, and
Mandelkow
,
E.
,
2012
, “
Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration
,”
Cold Spring Harbor Perspect. Med.
,
2
(
7
), p.
a006247
.10.1101/cshperspect.a006247
31.
Betthauser
,
T. J.
,
Bilgel
,
M.
,
Koscik
,
R. L.
,
Jedynak
,
B. M.
,
An
,
Y.
,
Kellett
,
K. A.
,
Moghekar
,
A.
, et al.,
2022
, “
Multi-Method Investigation of Factors Influencing Amyloid Onset and Impairment in Three Cohorts
,”
Brain
,
145
(
11
), pp.
4065
4079
.10.1093/brain/awac213
32.
Poppek
,
D.
,
Keck
,
S.
,
Ermak
,
G.
,
Jung
,
T.
,
Stolzing
,
A.
,
Ullrich
,
O.
,
Davies
,
K. J. A.
, and
Grune
,
T.
,
2006
, “
Phosphorylation Inhibits Turnover of the Tau Protein by the Proteasome: Influence of RCAN1 and Oxidative Stress
,”
Biochem. J.
,
400
(
3
), pp.
511
520
.10.1042/BJ20060463
33.
Kril
,
J.
,
Patel
,
S.
,
Harding
,
A.
, and
Halliday
,
G.
,
2002
, “
Neuron Loss From the Hippocampus of Alzheimer's Disease Exceeds Extracellular Neurofibrillary Tangle Formation
,”
Acta Neuropathol.
,
103
(
4
), pp.
370
376
.10.1007/s00401-001-0477-5
34.
Cavicchi
,
R. E.
,
King
,
J.
, and
Ripple
,
D. C.
,
2018
, “
Measurement of Average Aggregate Density by Sedimentation and Brownian Motion Analysis
,”
J. Pharm. Sci.
,
107
(
5
), pp.
1304
1312
.10.1016/j.xphs.2018.01.013
35.
Meyer-Luehmann
,
M.
,
Spires-Jones
,
T. L.
,
Prada
,
C.
,
Garcia-Alloza
,
M.
,
de Calignon
,
A.
,
Rozkalne
,
A.
,
Koenigsknecht-Talboo
,
J.
,
Holtzman
,
D. M.
,
Bacskai
,
B. J.
, and
Hyman
,
B. T.
,
2008
, “
Rapid Appearance and Local Toxicity of Amyloid-Beta Plaques in a Mouse Model of Alzheimer's Disease
,”
Nature
,
451
(
7179
), pp.
720
724
.10.1038/nature06616
36.
Han
,
S.
,
Kollmer
,
M.
,
Markx
,
D.
,
Claus
,
S.
,
Walther
,
P.
, and
Fändrich
,
M.
,
2017
, “
Amyloid Plaque Structure and Cell Surface Interactions of β-Amyloid Fibrils Revealed by Electron Tomography
,”
Sci. Rep.
,
7
(
1
), p.
43577
.10.1038/srep43577
37.
Bora
,
R. P.
, and
Prabhakara
,
R.
,
2009
, “
Translational, Rotational and Internal Dynamics of Amyloid Beta-Peptides (A Beta 40 and A Beta 42) From Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
131
(
15
), p.
155103
.10.1063/1.3249609
38.
Dawkins
,
E.
,
Derks
,
R. J. E.
,
Schifferer
,
M.
,
Trambauer
,
J.
,
Winkler
,
E.
,
Simons
,
M.
,
Paquet
,
D.
,
Giera
,
M.
,
Kamp
,
F.
, and
Steiner
,
H.
,
2023
, “
Membrane Lipid Remodeling Modulates γ-Secretase Processivity
,”
J. Biol. Chem.
,
299
(
4
), p.
103027
.10.1016/j.jbc.2023.103027
39.
Zempel
,
H.
,
Dennissen
,
F. J. A.
,
Kumar
,
Y.
,
Luedtke
,
J.
,
Biernat
,
J.
,
Mandelkow
,
E.-M.
, and
Mandelkow
,
E.
,
2017
, “
Axodendritic Sorting and Pathological Missorting of Tau Are Isoform-Specific and Determined by Axon Initial Segment Architecture
,”
J. Biol. Chem.
,
292
(
29
), pp.
12192
12207
.10.1074/jbc.M117.784702
40.
Kuznetsov
,
A. V.
,
2024
, “
Numerical Modeling of Senile Plaque Development Under Conditions of Limited Diffusivity of Amyloid-β Monomers
,”
J. Theor. Biol.
,
587
, p.
111823
.10.1016/j.jtbi.2024.111823
41.
Wojtkowiak
,
J.
,
2014
, “
Lumped Thermal Capacity Model
,”
Encyclopedia of Thermal Stresses
,
R. B.
Hetnarski
, ed.,
Springer
,
Dordrecht
, The Netherlands, pp.
2808
2817
.
42.
Boltachev
,
G. S.
, and
Ivanov
,
M. G.
,
2020
, “
Effect of Nanoparticle Concentration on Coagulation Rate of Colloidal Suspensions
,”
Heliyon
,
6
(
2
), p.
e03295
.10.1016/j.heliyon.2020.e03295
43.
Lane-Donovan
,
C.
, and
Boxer
,
A. L.
,
2024
, “
Disentangling Tau: One Protein, Many Therapeutic Approaches
,”
Neurotherapeutics
,
21
(
2
), p.
e00321
.10.1016/j.neurot.2024.e00321
44.
Pluta
,
R.
, and
Ułamek-Kozioł
,
M.
,
2020
, “
Tau Protein-Targeted Therapies in Alzheimer's Disease: Current State and Future Perspectives
,”
Alzheimer's Disease: Drug Discovery
,
X.
Huang
, ed.,
Exon Publications
,
Brisbane, AU
, pp.
69
82
, Chap. IV.
45.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2022
, “
An Analytical Solution Simulating Growth of Lewy Bodies
,”
Math. Med. Biol.
,
39
(
3
), pp.
299
312
.10.1093/imammb/dqac006
46.
Kuznetsov
,
A. V.
,
2024
, “
Numerical and Analytical Simulation of the Growth of Amyloid-β Plaques
,”
ASME J. Biomed. Eng.
,
146
, p.
061004
.10.1115/1.4064969
47.
Kuznetsov
,
A. V.
,
2024
, “
Lewy Body Radius Growth: The Hypothesis of the Cube Root of Time Dependency
,”
J. Theor. Biol.
,
581
, p.
111734
.10.1016/j.jtbi.2024.111734
48.
Watzky
,
M. A.
,
Finney
,
E. E.
, and
Finke
,
R. G.
,
2008
, “
Transition-Metal Nanocluster Size Vs Formation Time and the Catalytically Effective Nucleus Number: A Mechanism-Based Treatment
,”
J. Am. Chem. Soc.
,
130
(
36
), pp.
11959
11969
.10.1021/ja8017412
49.
Orr
,
M. E.
, and
Oddo
,
S.
,
2013
, “
Autophagic/Lysosomal Dysfunction in Alzheimer's Disease
,”
Alzheimer's Res. Ther.
,
5
(
5
), p.
53
.10.1186/alzrt217
50.
Zhang
,
W.
,
Xu
,
C.
,
Sun
,
J.
,
Shen
,
H.-M.
,
Wang
,
J.
, and
Yang
,
C.
,
2022
, “
Impairment of the Autophagy–Lysosomal Pathway in Alzheimer's Diseases: Pathogenic Mechanisms and Therapeutic Potential
,”
Acta Pharm. Sin. B
,
12
(
3
), pp.
1019
1040
.10.1016/j.apsb.2022.01.008
51.
Barmaki
,
H.
,
Nourazarian
,
A.
, and
Khaki-Khatibi
,
F.
,
2023
, “
Proteostasis and Neurodegeneration: A Closer Look at Autophagy in Alzheimer's Disease
,”
Front. Aging Neurosci.
,
15
, p.
1281338
.10.3389/fnagi.2023.1281338
52.
Nguyen
,
H. L.
,
Linh
,
H. Q.
,
Krupa
,
P.
,
La Penna
,
G.
, and
Li
,
M. S.
,
2022
, “
Amyloid β Dodecamer Disrupts the Neuronal Membrane More Strongly Than the Mature Fibril: Understanding the Role of Oligomers in Neurotoxicity
,”
J. Phys. Chem. B
,
126
(
20
), pp.
3659
3672
.10.1021/acs.jpcb.2c01769
53.
Rischel
,
E. B.
,
Gejl
,
M.
,
Brock
,
B.
,
Rungby
,
J.
, and
Gjedde
,
A.
,
2023
, “
In Alzheimer's Disease, Amyloid Beta Accumulation is a Protective Mechanism That Ultimately Fails
,”
Alzheimer's Dementia
,
19
(
3
), pp.
771
783
.10.1002/alz.12701
54.
Zhang
,
H.
,
Wei
,
W.
,
Zhao
,
M.
,
Ma
,
L.
,
Jiang
,
X.
,
Pei
,
H.
,
Cao
,
Y.
, and
Li
,
H.
,
2021
, “
Interaction Between Aβ and Tau in the Pathogenesis of Alzheimer's Disease
,”
Int. J. Biol. Sci.
,
17
(
9
), pp.
2181
2192
.10.7150/ijbs.57078
55.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2018
, “
How the Formation of Amyloid Plaques and Neurofibrillary Tangles May be Related – A Mathematical Modelling Study
,”
Proc. R. Soc. A
,
474
(
2210
), p.
20170777
.10.1098/rspa.2017.0777
56.
Kuznetsov
,
I. A.
, and
Kuznetsov
,
A. V.
,
2018
, “
Simulating the Effect of Formation of Amyloid Plaques on Aggregation of Tau Protein
,”
Proc. R. Soc. A
,
474
(
2220
), p.
20180511
.10.1098/rspa.2018.0511
57.
Nakanishi
,
H.
,
2003
, “
Microglial Functions and Proteases
,”
Mol. Neurobiol.
,
27
(
2
), pp.
163
176
.10.1385/MN:27:2:163
58.
Madrasi
,
K.
,
Das
,
R.
,
Mohmmadabdul
,
H.
,
Lin
,
L.
,
Hyman
,
B. T.
,
Lauffenburger
,
D. A.
,
Albers
,
M. W.
, et al.,
2021
, “
Systematic in Silico Analysis of Clinically Tested Drugs for Reducing Amyloid-Beta Plaque Accumulation in Alzheimer's Disease
,”
Alzheimer's Dementia
,
17
(
9
), pp.
1487
1498
.10.1002/alz.12312
59.
Lloret‐Villas
,
A.
,
Varusai
,
T. M.
,
Juty
,
N.
,
Laibe
,
C.
,
Le NovÈre
,
N.
,
Hermjakob
,
H.
, and
Chelliah
,
V.
,
2017
, “
The Impact of Mathematical Modeling in Understanding the Mechanisms Underlying Neurodegeneration: Evolving Dimensions and Future Directions
,”
CPT-Pharmacometrics Syst. Pharmacol.
,
6
(
2
), pp.
73
86
.10.1002/psp4.12155
You do not currently have access to this content.