Abstract

Owing to soft clay’s high water content and low strength, the large volumes of it that are excavated during coastal and waterway construction must be disposed of by being dumped on vacant land or used as fill, and results in increasingly serious environmental problems. Another important regional environmental problem is the large volumes of coal fly ash (CFA) produced by coal-fired power plants. Soft clay disposal methods that can also use CFA can have important practical significance for infrastructure construction projects and can also help the regional economies in areas with limited land resources. At present, microbially induced calcium carbonate precipitation (MICP) is used to strengthen sandy material with high porosity and permeability. Because of the special chemical compositions and complex mechanical properties of both soft clay and CFA, studies on the solidification of soft clay-CFA mixtures by microbial methods are rare. This paper describes the results of systematic MICP curing tests on composite soft clay samples with different amounts of added CFA. Changes in the strength of MICP/CFA-cured soft clay samples and X-ray diffraction analyses are used to study the MICP strengthening mechanisms. The results show the following conclusions. (1) Using composite MICP/CFA solidification can effectively improve the strength of soft clay. The clay unconfined compressive strength can be increased by a factor of 5.96. (2) MICP/CFA-aided solidification cements soft clay particles together and reduces water content by consuming the free water of soft clay during their respective reactions. (3) MICP and CFA synergistically enhance the strength of soft clay, and the solidification effect is more obvious for low water content soft clay. (4) There is an optimal composite ratio under the experimental conditions with a 0.75 mol/L bacterial nutrient concentration; the optimal composite ratio for curing is 30% water content of soft clay with 30% CFA.

References

1.
Cargill
K. W.
, “
Prediction of Consolidation of Very Soft Soil
,”
Journal of Geotechnical Engineering
110
, no. 
6
(June
1984
):
775
795
, https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(775)
2.
Lee
S. L.
,
Karunaratne
G. P.
,
Yong
K. Y.
, and
Ganeshan
V.
, “
Layered Clay-Sand Scheme of Land Reclamation
,”
Journal of Geotechnical Engineering
113
, no. 
9
(September
1987
):
984
995
, https://doi.org/10.1061/(ASCE)0733-9410(1987)113:9(984)
3.
Ji
F. L.
,
Zhu
W.
, and
Zhang
C. L.
, “
Study of Treatment Technology of Dredging Sludge with Geosynthetizing Method
” (in Chinese),
Rock and Soil Mechanics
25
, no. 
12
(December
2004
):
1999
2002
, https://doi.org/10.3969/j.issn.1000-7598.2004.12.029
4.
Leroueil
S.
and
Rowe
R. K.
, “
Embankments over Soft Soil and Peat
,” in
Geotechnical and Geoenvironmental Engineering Handbook
, ed.
Rowe
R. K.
(
Boston, MA
:
Springer
,
2001
),
463
499
.
5.
Pecchioli
J. A.
, “
Disposal of Contaminated Sediments in NY/NJ Harber
,” in
Second International Conference on Dredging and Dredged Material Placement
(
New York
:
American Society of Civil Engineers
,
1994
),
606
615
.
6.
Deng
D. S.
,
Zhang
T. J.
,
Zhang
S.
, and
Hong
Z. S.
, “
Technique for Utilization of High-Water-Content Dredged Clayey Soil as Fill Material for the Eastern Route of South-to-North Water Diversion Project
” (in Chinese),
Journal of Hohai University (Natural Sciences)
36
, no. 
4
(July
2008
):
559
562
, https://doi.org/10.3876/j.issn.1000-1980.2008.04.028
7.
Fowler
J.
,
Sprague
C. J.
,
Toups
D.
, and
Engler
R. M.
,
Dredged Material-Filled Geotextile Containers, ADA381381
(Vicksburg, MS:
Army Engineer Waterways Experiment Station Vicksburg MS Environmental Lab
,
1995
).
8.
Koukouzas
N. K.
,
Zeng
R.
,
Perdikatsis
V.
,
Xu
W.
, and
Kakaras
E. K.
, “
Mineralogy and Geochemistry of Greek and Chinese Coal Fly Ash
,”
Fuel
85
, no. 
16
(November
2006
):
2301
2309
, https://doi.org/10.1016/j.fuel.2006.02.019
9.
He
Y.
,
Luo
Q.
, and
Hu
H.
, “
Situation Analysis and Countermeasures of China's Fly Ash Pollution Prevention and Control
,”
Procedia Environmental Sciences
16
(December
2012
):
690
696
, https://doi.org/10.1016/j.proenv.2012.10.095
10.
Wang
S.
,
Zhang
Y.
,
Gu
Y.
,
Wang
J.
,
Liu
Z.
,
Zhang
Y.
,
Cao
Y.
,
Romero
C. E.
, and
Pan
W. P.
, “
Using Modified Fly Ash for Mercury Emissions Control for Coal-Fired Power Plant Applications in China
,”
Fuel
181
, no. 
1
(October
2016
):
1230
1237
, https://doi.org/10.1016/j.fuel.2016.02.043
11.
Ouhadi
V. R.
,
Yong
R. N.
, and
Deiranlou
M.
, “
Enhancement of Cement-Based Solidification/Stabilization of a Lead-Contaminated Smectite Clay
,”
Journal of Hazardous Materials
403
, no. 
1
(February
2021
): 123969, https://doi.org/10.1016/j.jhazmat.2020.123969
12.
Glasser
F. P.
, “
Fundamental Aspects of Cement Solidification and Stabilization
,”
Journal of Hazardous Materials
52
, nos. 
2–3
(April
1997
):
151
170
, https://doi.org/10.1016/S0304-3894(96)01805-5
13.
Ahmed
A.
,
Soliman
A. M.
,
El Naggar
M. H.
, and
Kamei
T.
, “
An Assessment of Geo-Environmental Properties for Utilization of Recycled Gypsum in Earthwork Projects
,”
Soils and Foundations
55
, no. 
5
(October
2015
):
1139
1147
, https://doi.org/10.1016/j.sandf.2015.09.014
14.
Yadu
L.
and
Tripathi
R. K.
, “
Effects of Granulated Blast Furnace Slag in the Engineering Behaviour of Stabilized Soft Soil
,”
Procedia Engineering
51
(April
2013
):
125
131
, https://doi.org/10.1016/j.proeng.2013.01.019
15.
Deepak
M. S.
,
Rohini
S.
,
Harini
B. S.
, and
Ananthi
G.
, “
Influence of Fly-Ash on the Engineering Characteristics of Stabilised Clay Soil
,”
Materials Today: Proceedings
37
, Part
2
(August
2020
): 2014–2018, https://doi.org/10.1016/j.matpr.2020.07.497
16.
Abbas
S.
,
Saleem
M. A.
,
Kazmi
S. M. S.
, and
Munir
M. J.
, “
Production of Sustainable Clay Bricks Using Waste Fly Ash: Mechanical and Durability Properties
,”
Journal of Building Engineering
14
(November
2017
):
7
14
, https://doi.org/10.1016/j.jobe.2017.09.008
17.
Tomohisa
S.
,
Sawa
K.
, and
Naitoh
N.
, “
Hedoro Hardening Treatment by Industrial Wastes
” (in Japanese),
Journal of the Society of Materials Science
44
, no. 
503
(August
1995
):
1023
1026
, https://doi.org/10.2472/jsms.44.1023
18.
Chen
M. G.
,
Yang
G. L.
, and
Yu
L. Y.
, “
Experimental Study on Solidification and Stabilization of Polluted Silt Using Fly Ash and Sodium Hydroxide
” (in Chinese),
Journal of Huazhong University of Science and Technology (Natural Science Edition)
41
, no. 
10
(October
2013
):
123
127
, https://doi.org/10.13245/j.hust.2013.10.013
19.
Nalbantoglu
Z.
and
Gucbilmez
E.
, “
Improvement of Calcareous Expansive Soils in Semi-arid Environments
,”
Journal of Arid Environments
47
, no. 
4
(April
2001
):
453
463
, https://doi.org/10.1006/jare.2000.0726
20.
Shirazi
H.
, “
Field and Laboratory Evaluation of the Use of Lime Fly Ash to Replace Soil Cement as a Base Course
,”
Transportation Research Record
1652
, no. 
1
(January
1999
):
270
275
, https://doi.org/10.3141/1652-34
21.
Miller
G. A.
and
Zaman
M.
, “
Field and Laboratory Evaluation of Cement Kiln Dust as a Soil Stabilizer
,”
Transportation Research Record
1714
, no. 
1
(January
2000
):
25
32
, https://doi.org/10.3141/1714-04
22.
Marín
S.
,
Cabestrero
O.
,
Demergasso
C.
,
Olivares
S.
,
Zetola
V.
, and
Vera
M.
, “
An Indigenous Bacterium with Enhanced Performance of Microbially-Induced Ca-Carbonate Biomineralization under Extreme Alkaline Conditions for Concrete and Soil-Improvement Industries
,”
Acta Biomaterialia
120
, no. 
15
(January
2021
):
304
317
, https://doi.org/10.1016/j.actbio.2020.11.016
23.
Whiffin
V. S.
,
van Paassen
L. A.
, and
Harkes
M. P.
, “
Microbial Carbonate Precipitation as a Soil Improvement Technique
,”
Geomicrobiology Journal
24
, no. 
5
(August
2007
):
417
423
, https://doi.org/10.1080/01490450701436505
24.
Wu
Y.
,
Tahmasebi
P.
,
Lin
C.
,
Zahid
M. A.
,
Dong
C.
,
Golab
A. N.
, and
Ren
L.
, “
A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-ray CT Experiments
,”
Marine and Petroleum Geology
103
(May
2019
):
12
28
, https://doi.org/10.1016/j.marpetgeo.2019.02.003
25.
Mujah
D.
,
Shahin
M.
, and
Cheng
L.
, “
State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization
,”
Geomicrobiology
34
, no. 
6
(August
2016
):
524
537
, https://doi.org/10.1080/01490451.2016.1225866
26.
Lin
H.
,
Suleiman
M. T.
, and
Brown
D. G.
, “
Investigation of Pore-Scale CaCO3 Distributions and Their Effects on Stiffness and Permeability of Sands Treated by Microbially Induced Carbonate Precipitation (MICP)
,”
Soils and Foundations
60
, no. 
4
(August
2020
):
944
961
, https://doi.org/10.1016/j.sandf.2020.07.003
27.
Jongvivatsakul
P.
,
Janprasit
K.
,
Nuaklong
P.
,
Pungrasmi
W.
, and
Likitlersuang
S.
, “
Investigation of the Crack Healing Performance in Mortar Using Microbially Induced Calcium Carbonate Precipitation (MICP) Method
,”
Construction and Building Materials
212
, no. 
10
(July
2019
):
737
744
, https://doi.org/10.1016/j.conbuildmat.2019.04.035
28.
Salifu
E.
,
Maclachlan
E.
,
Iyer
K. R.
,
Knapp
C. W.
, and
Tarantino
A.
, “
Application of Microbially Induced Calcite Precipitation in Erosion Mitigation and Stabilisation of Sandy Soil Foreshore Slopes: A Preliminary Investigation
,”
Engineering Geology
201
, no. 
4
(February
2016
):
96
105
, https://doi.org/10.1016/j.enggeo.2015.12.027
29.
Sharma
M.
,
Satyam
N.
, and
Reddy
K. R.
, “
Effect of Freeze-Thaw Cycles on Engineering Properties of Biocemented Sand under Different Treatment Conditions
,”
Engineering Geology
284
(April
2021
): 106022, https://doi.org/10.1016/j.enggeo.2021.106022
30.
Cardoso
R.
,
Pires
I.
,
Duarte
S. O. D.
, and
Monteiro
G. A.
, “
Effects of Clay’s Chemical Interactions on Biocementation.
Applied Clay Science
156
(May
2018
):
96
103
, https://doi.org/10.1016/j.clay.2018.01.035
31.
Morales
L.
,
Romero
E.
,
Jommi
C.
,
Garzón
E.
, and
Giménez
A.
, “
Feasibility of a Soft Biological Improvement of Natural Soils Used in Compacted Linear Earth Construction
,”
Acta Geotechnica
10
, no. 
1
(February
2015
):
157
171
, https://doi.org/10.1007/s11440-014-0344-x
32.
Morales
L.
,
Garzón
E.
,
Romero
E.
, and
Sánchez-Soto
P. J.
, “
Microbiological Induced Carbonate (CaCO3) Precipitation Using Clay Phyllites to Replace Chemical Stabilizers (Cement or Lime)
,”
Applied Clay Science
174
, no. 
15
(June
2019
):
15
28
, https://doi.org/10.1016/j.clay.2019.03.018
33.
Dhami
N. K.
,
Mukherjee
A.
, and
Reddy
M. S.
, “
Viability of Calcifying Bacterial Formulations in Fly Ash for Applications in Building Materials
,”
Journal of Industrial Microbiology and Biotechnology
40
, no. 
12
(December
2013
):
1403
1413
, https://doi.org/10.1007/s10295-013-1338-7
34.
Xiao
J. Z.
,
Wei
Y. Q.
,
Cai
H.
,
Wang
Z. W.
,
Yang
T.
,
Wang
Q. H.
, and
Wu
S. F.
, “
Microbial-Induced Carbonate Precipitation for Strengthening Soft Clay
,”
Advances in Materials Science and Engineering
2020 (April
2020
): 8140724, https://doi.org/10.1155/2020/8140724
35.
Li
M.
,
Cheng
X. H.
, and
Guo
H. X.
, “
Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil
,”
International Biodeterioration & Biodegradation
76
(January
2013
):
81
85
, https://doi.org/10.1016/j.ibiod.2012.06.016
36.
Yang
Z.
and
Cheng
X. H.
, "
A Performance Study of High-Strength Microbial Mortar Produced by Low Pressure Grouting for the Reinforcement of Deteriorated Masonry Structures
,"
Construction and Building Materials
41
(April
2013
):
505
515
, https://doi.org/10.1016/j.conbuildmat.2012.12.055
37.
Standard for Geotechnical Testing Method
, GB/T50123-2019 (in Chinese) (Beijing, China:
China Water & Power Press
,
2019
).
38.
Test Specification for Unconfined Compressive Strength of Cohesive Soil, ASTM D2166-00 (West Conshohocken, PA:
ASTM International
, approved June 10,
2000
), https://doi.org/10.1520/D2166-00
39.
Shi
X. S.
and
Herle
I.
, “
Modeling the Compression Behavior of Remolded Clay Mixtures
,”
Computers and Geotechnics
80
(December
2016
):
215
225
, https://doi.org/10.1016/j.compgeo.2016.07.007
40.
Elseewi
A. A.
,
Straughan
I. R.
, and
Page
A. L.
, “
Sequential Cropping of Fly Ash-Amended Soils: Effects on Soil Chemical Properties and Yield and Elemental Composition of Plants
,”
Science of the Total Environment
15
, no. 
3
(August
1980
):
247
259
, https://doi.org/10.1016/0048-9697(80)90053-4
41.
Ghodrati
M.
,
Sims
J. T.
,
Vasilas
B. L.
, and
Hendricks
S. E.
, “
95/05947 Enhancing the Benefits of Fly Ash as a Soil Amendment by Pre-leaching
,”
Fuel and Energy Abstracts
36
, no. 
6
(November
1995
): 423, https://doi.org/10.1016/0140-6701(95)97595-B
42.
Siddique
R.
,
Singh
K.
,
Kunal
K.
,
Singh
M.
,
Corinaldesi
V.
, and
Rajor
A.
, “
Properties of Bacterial Rice Husk Ash Concrete
,”
Construction and Building Materials
121
, no. 
15
(September
2016
):
112
119
, https://doi.org/10.1016/j.conbuildmat.2016.05.146
43.
Analysis Method for Clay Minerals and Ordinary Non-clay Minerals in Sedimentary Rocks by the X-ray Diffraction
, SY/T 5163-2010 (in Chinese) (
Beijing, China
:
Petroleum Industry Press
,
2010
).
44.
Sezer
A.
,
İnan
G.
,
Yılmaz
H. R.
, and
Ramyar
K.
, "
Utilization of a Very High Lime Fly Ash for Improvement of Izmir Clay
,"
Building and Environment
41
, no. 
2
(February
2006
):
150
155
, https://doi.org/10.1016/j.buildenv.2004.12.009
45.
Cristelo
N.
,
Glendinning
S.
,
Fernandes
L.
, and
Pinto
A. T.
, “
Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilization
,”
Acta Geotechnica
8
, no. 
4
(August
2013
):
395
405
, https://doi.org/10.1007/s11440-012-0200-9
46.
Cristelo
N.
,
Glendinning
S.
, and
Jalali
S.
, “
Sub-bases Layers of Residual Granite Soil Stabilised with Lime
,”
Soils Rocks
32
, no. 
2
(May
2009
):
83
88
.
47.
Komonweeraket
K.
,
Cetin
B.
,
Aydilek
A. H.
,
Benson
C. H.
, and
Edil
T. B.
, “
Effects of pH on the Leaching Mechanisms of Elements from Fly Ash Mixed Soils
,”
Fuel
140
, no. 
15
(January
2015
):
788
802
, https://doi.org/10.1016/j.fuel.2014.09.068
48.
Payá
J.
,
Monzó
J.
,
Borrachero
M. V.
, and
Peris-Mora
E.
, “
Mechanical Treatment of Fly Ashes. Part I: Physico-Chemical Characterization of Ground Fly Ashes
,”
Cement and Concrete Research
25
, no. 
7
(October
1995
):
1469
1479
, https://doi.org/10.1016/0008-8846(95)00141-X
49.
Stocks-Fischer
S.
,
Galinat
J. K.
, and
Bang
S. S.
, “
Microbiological Precipitation of CaCO3
,”
Soil Biology and Biochemistry
31
, no. 
11
(October
1999
):
1563
1571
, https://doi.org/10.1016/S0038-0717(99)00082-6
50.
Gorospe
C. M.
,
Han
S.-H.
,
Kim
S.-G.
,
Park
J.-Y.
,
Kang
C.-H.
,
Jeong
J.-H.
, and
So
J.-S.
, “
Effects of Different Calcium Salts on Calcium Carbonate Crystal Formation by Sporosarcina Pasteurii KCTC 3558
,”
Biotechnology and Bioprocess Engineering
18
, no. 
5
(October
2013
):
903
908
, https://doi.org/10.1007/s12257-013-0030-0
51.
Zaady
E.
,
Katra
I.
,
Barkai
D.
,
Knoll
Y.
, and
Sarig
S.
, “
The Coupling Effects of Using Coal Fly-Ash and Bio-Inoculant for Rehabilitation of Disturbed Biocrusts in Active Sand Dunes
,”
Land Degradation & Development
28
, no. 
4
(March
2016
):
1228
1236
, https://doi.org/10.1002/ldr.2510
52.
Justnes
H.
,
Skocek
J.
,
Østnor
T. A.
,
Engelsen
C. J.
, and
Skjølsvold
O.
, “
Microstructural Changes of Hydrated Cement Blended with Fly Ash upon Carbonation
,”
Cement and Concrete Research
137
(November
2020
): 106192, https://doi.org/10.1016/j.cemconres.2020.106192
53.
Kaniraj
S. R.
and
Havanagi
V. G.
, “
Compressive Strength of Cement Stabilized Fly Ash-Soil Mixtures
,”
Cement and Concrete Research
29
, no. 
5
(May
1999
):
673
677
, https://doi.org/10.1016/S0008-8846(99)00018-6
54.
Whiffin
V. S.
, “
Microbial CaCO3 Precipitation for the Production of Biocement
” (PhD diss.,
Murdoch University
,
2004
).
This content is only available via PDF.
You do not currently have access to this content.