Abstract

In construction, additive manufacturing (AM) can be used to create structural or non-structural elements, such as frameworks, reinforcement, or panels. However, AM technology still requires enhancements for the mechanical response of final 3D printed elements to accommodate the mechanical needs of structural components. This paper evaluates various AM process parameters and bioinspired printing patterns to improve the mechanical performance of 3D printed polymeric elements. AM processes, including printing speed and nozzle diameter, are studied. Bioinspired patterns, including Bouligand-like, alternating, sinusoidal, grid, triangular, and hexagonal, are investigated and compared to simple parallel patterns. Results of this study suggest that the mechanical behavior of 3D printed elements can be significantly enhanced by optimizing the printing speed and nozzle diameter. Incorporating bioinspired architectures in AM, such as the Bouligand pattern, are shown to enhance mechanical performance. Slower speeds and larger nozzle diameters result in higher tensile strength. Continuous and twisting patterns yield more ductility, while patterns parallel to the direction of the tensile test result in higher strengths. Microscopic images from the fracture surface indicate that a larger nozzle diameter enhances intra- and interlayer bonding between consequent printed layers. Additionally, more complex crack propagation is observed in twisting patterns with enhanced elongation before total failure. It is also observed that there is an optimal time of exposure to high temperature for deposited materials during AM to improve bonding between adjacent beads. Bioinspired patterns help maintain higher ductility with similar strength despite encompassing higher porosity than parallel patterns, which could be advantageous for material optimization purposes. The bioinspired 3D printed polymeric elements showed tensile properties higher than those of plain polymer filament. The outcome of this study can help optimize both the process and the architecture of 3D printed elements to enhance their mechanical properties to be used as reinforcing elements for reinforced concrete applications.

References

1.
Khoshnevis
B.
and
Bekey
G.
, “
Automated Construction Using Contour Crafting--Applications on Earth and Beyond
,” in
International Symposium on Automation and Robotics in Construction, 19th
(
Gaithersburg, MD
:
National Institute of Standards and Technology
,
2003
),
489
494
.
2.
Kampf
M.
, “
Verbindende Verfahren
,” in
Handbuch Maschinenbau
(
Wiesbaden, Germany
:
Springer Vieweg Verlag
,
2017
),
1243
1262
.
3.
Hack
N.
,
Lauer
W.
,
Gramazio
F.
, and
Kohler
M.
, “
Mesh Mould: Robotically Fabricated Metal Meshes as Concrete Formwork and Reinforcement
” (paper presentation,
FERRO 11 and Third ICTRC - 11th International Symposium on Ferrocement
, Aachen, Germany, June 7–10,
2015
).
4.
Bos
F. P.
,
Ahmed
Z. Y.
,
Wolfs
R. J. M.
, and
Salet
T. A. M.
, “
3D Printing Concrete with Reinforcement
,” in
High Tech Concrete: Where Technology and Engineering Meet
(
Cham, Switzerland
:
Springer
,
2017
),
2484
2493
, https://doi.org/10.1007/978-3-319-59471-2_283
5.
Korkut
V.
and
Yavuz
H.
, “
Enhancing the Tensile Properties with Minimal Mass Variation by Revealing the Effects of Parameters in Fused Filament Fabrication Process
,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering
42
, no. 
10
(September
2020
): 525, https://doi.org/10.1007/s40430-020-02610-0
6.
Bandyopadhyay
A.
and
Heer
B.
, “
Additive Manufacturing of Multi-material Structures
,”
Materials Science and Engineering: R: Reports
129
(July
2018
):
1
16
, https://doi.org/10.1016/j.mser.2018.04.001
7.
Wendel
B.
,
Rietzel
D.
,
Kühnlein
F.
,
Feulner
R.
,
Hülder
G.
, and
Schmachtenberg
E.
, “
Additive Processing of Polymers
,”
Macromolecular Materials and Engineering
293
, no. 
10
(October
2008
):
799
809
, https://doi.org/10.1002/mame.200800121
8.
Sood
A. K.
,
Ohdar
R. K.
, and
Mahapatra
S. S.
, “
Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts
,”
Materials & Design
31
, no. 
1
(January
2010
):
287
295
, https://doi.org/10.1016/j.matdes.2009.06.016
9.
Singh
D.
,
Babbar
A.
,
Jain
V.
,
Gupta
D.
,
Saxena
S.
, and
Dwibedi
V.
, “
Synthesis, Characterization, and Bioactivity Investigation of Biomimetic Biodegradable PLA Scaffold Fabricated by Fused Filament Fabrication Process
,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering
41
, no. 
3
(February
2019
): 121, https://doi.org/10.1007/s40430-019-1625-y
10.
Liu
X.
,
Zhang
M.
,
Li
S.
,
Si
L.
,
Peng
J.
, and
Hu
Y.
, “
Mechanical Property Parametric Appraisal of Fused Deposition Modeling Parts Based on the Gray Taguchi Method
,”
The International Journal of Advanced Manufacturing Technology
89
, no. 
5
(March
2017
):
2387
2397
, https://doi.org/10.1007/s00170-016-9263-3
11.
Lanzotti
A.
,
Grasso
M.
,
Staiano
G.
, and
Martorelli
M.
, “
The Impact of Process Parameters on Mechanical Properties of Parts Fabricated in PLA with an Open-Source 3-D Printer
,”
Rapid Prototyping Journal
21
, no. 
5
(August
2015
):
604
617
, https://doi.org/10.1108/RPJ-09-2014-0135
12.
Uddin
M. S.
,
Sidek
M. F. R.
,
Faizal
M. A.
,
Ghomashchi
R.
, and
Pramanik
A.
, “
Evaluating Mechanical Properties and Failure Mechanisms of Fused Deposition Modeling Acrylonitrile Butadiene Styrene Parts
,”
Journal of Manufacturing Science and Engineering
139
, no. 
8
(August
2017
): 081018, https://doi.org/10.1115/1.4036713
13.
Magalhães
L. C.
,
Volpato
N.
, and
Luersen
M. A.
, “
Evaluation of Stiffness and Strength in Fused Deposition Sandwich Specimens
,”
Journal of the Brazilian Society of Mechanical Sciences and Engineering
36
, no. 
3
(May
2014
):
449
459
, https://doi.org/10.1007/s40430-013-0111-1
14.
Wu
W.
,
Geng
P.
,
Li
G.
,
Zhao
D.
,
Zhang
H.
, and
Zhao
J.
, “
Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS
,”
Materials (Basel)
8
, no. 
9
(September
2015
):
5834
5846
, https://doi.org/10.3390/ma8095271
15.
Frank
D.
,
Chandra
R. L.
, and
Schmitt
R.
, “
An Investigation of Cause-and-Effect Relationships within a 3D-Printing System and the Applicability of Optimum Printing Parameters from Experimental Models to Different Printing Jobs
,”
3D Printing and Additive Manufacturing
2
, no. 
3
(September
2015
):
131
139
, https://doi.org/10.1089/3dp.2015.0010
16.
Laureto
J. J.
and
Pearce
J. M.
, “
Anisotropic Mechanical Property Variance between ASTM D638-14 Type I and Type IV Fused Filament Fabricated Specimens
,”
Polymer Testing
68
(July
2018
):
294
301
, https://doi.org/10.1016/j.polymertesting.2018.04.029
17.
Hossain
M. S.
,
Espalin
D.
,
Ramos
J.
,
Perez
M.
, and
Wicker
R.
, “
Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts through Build Parameter Modifications
,”
Journal of Manufacturing Science and Engineering
136
, no. 
6
(December
2014
): 061002, https://doi.org/10.1115/1.4028538
18.
Tambrallimath
V.
,
Keshavamurthy
R.
,
Koppad
S. D. P. G.
, and
Kumar
G. S. P.
, “
Thermal Behavior of PC-ABS Based Graphene Filled Polymer Nanocomposite Synthesized by FDM Process
,”
Composites Communications
15
(October
2019
):
129
134
, https://doi.org/10.1016/j.coco.2019.07.009
19.
Wang
J.
,
Mubarak
S.
,
Dhamodharan
D.
,
Divakaran
N.
,
Wu
L.
, and
Zhang
X.
, “
Fabrication of Thermoplastic Functionally Gradient Composite Parts with Anisotropic Thermal Conductive Properties Based on Multicomponent Fused Deposition Modeling 3D Printing
,”
Composites Communications
19
(June
2020
):
142
146
, https://doi.org/10.1016/j.coco.2020.03.012
20.
Carneiro
O. S.
,
Silva
A. F.
, and
Gomes
R.
, “
Fused Deposition Modeling with Polypropylene
,”
Materials & Design
83
(October
2015
):
768
776
, https://doi.org/10.1016/j.matdes.2015.06.053
21.
Mazzanti
V.
,
Malagutti
L.
, and
Mollica
F.
, “
FDM 3D Printing of Polymers Containing Natural Fillers: A Review of Their Mechanical Properties
,”
Polymers
11
, no. 
7
(June
2019
): 1094, https://doi.org/10.3390/polym11071094
22.
Papon
E. A.
,
Haque
A.
, and
Spear
S. K.
, “
Effects of Fiber Surface Treatment and Nozzle Geometry in Structural Properties of Additively Manufactured Two-Phase Composites
,” in
AIAA Scitech 2019 Forum
(
Reston, VA
:
American Institute of Aeronautics and Astronautics
,
2019
), https://doi.org/10.2514/6.2019-0407
23.
Blok
L. G.
,
Longana
M. L.
,
Yu
H.
, and
Woods
B. K. S.
, “
An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites
,”
Additive Manufacturing
22
(August
2018
):
176
186
, https://doi.org/10.1016/j.addma.2018.04.039
24.
Chacón
J. M.
,
Caminero
M. A.
,
García-Plaza
E.
, and
Núñez
P. J.
, “
Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection
,”
Materials & Design
124
(June
2017
):
143
157
, https://doi.org/10.1016/j.matdes.2017.03.065
25.
Tsouknidas
A.
,
Pantazopoulos
M.
,
Katsoulis
I.
,
Fasnakis
D.
,
Maropoulos
S.
, and
Michailidis
N.
, “
Impact Absorption Capacity of 3D-Printed Components Fabricated by Fused Deposition Modelling
,”
Materials & Design
102
(July
2016
):
41
44
, https://doi.org/10.1016/j.matdes.2016.03.154
26.
Speck
T.
,
Speck
O.
,
Masselter
T.
,
Bohn
H.
, and
Mülhaupt
R.
, “
Plants as Concept Generators for Biomimetic Self-Healing and Self-Adaptive Materials, Structures and Surfaces
” (paper presentation,
ICSHM 2013: Proceedings of the Fourth International Conference on Self-Healing Materials
, Ghent, Belgium, June 16–20,
2013
).
27.
Milwich
M.
,
Speck
T.
,
Speck
O.
,
Stegmaier
T.
, and
Planck
H.
, “
Biomimetics and Technical Textiles: Solving Engineering Problems with the Help of Nature’s Wisdom
,”
American Journal of Botany
93
, no. 
10
(October
2006
):
1455
1465
, https://doi.org/10.3732/ajb.93.10.1455
28.
Beyer
H.-G.
,
Edler
J.
,
Herdy
M.
,
Koref
I. S.
,
Olhofer
M.
,
Rudolph
G.
,
Sachs
W.
,
Schliewe
S.
,
Seitz
H.
, and
Tesari
I.
,
Bionische Optimierung. Anwendung biologischer Wachstumsgesetze zur strukturmechanischen Optimierung technischer Bauteile
(
Düsseldorf, Germany
:
Verein Deutscher Ingenieure
,
2011
).
29.
Compton
B. G.
and
Lewis
J. A.
, “
3D‐Printing of Lightweight Cellular Composites
,”
Advanced Materials
26
, no. 
34
(September
2014
):
5930
5935
, https://doi.org/10.1002/adma.201401804
30.
Pinto
P.
,
Iervolino
O.
,
Scarselli
G.
,
Ginzburg
D.
, and
Meo
M.
, “
Bioinspired Twisted Composites Based on Bouligand Structures
,” in
Bioinspiration, Biomimetics, Bioreplication 2016
(
Las Vegas, NV
:
Society of Photo-Optical Instrumentation Engineers
,
2016
), 97970E, https://doi.org/10.1117/12.2219088
31.
Meyers
M. A.
,
McKittrick
J.
, and
Chen
P.-Y.
, “
Structural Biological Materials: Critical Mechanics-Materials Connections
,”
Science
339
, no. 
6121
(February
2013
):
773
779
, https://doi.org/10.1126/science.1220854
32.
Gibson
R. F.
,
Principles of Composite Material Mechanics
, 4th ed. (
Boca Raton, FL
:
CRC press
,
2016
).
33.
Zaheri
A.
,
Fenner
J. S.
,
Russell
B. P.
,
Restrepo
D.
,
Daly
M.
,
Wang
D.
,
Hayashi
C.
,
Meyers
M. A.
,
Zavattieri
P. D.
, and
Espinosa
H. D.
, “
Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis
,”
Advanced Functional Materials
28
, no. 
33
(August
2018
): 10803073, https://doi.org/10.1002/adfm.201803073
34.
Rosewitz
J. A.
,
Choshali
H. A.
, and
Rahbar
N.
, “
Bioinspired Design of Architected Cement-Polymer Composites
,”
Cement and Concrete Composites
96
(February
2019
):
252
265
, https://doi.org/10.1016/j.cemconcomp.2018.12.010
35.
Wang
J.
,
Cheng
Q.
, and
Tang
Z.
, “
Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre
,”
Chemical Society Reviews
41
, no. 
3
(September
2011
):
1111
1129
, https://doi.org/10.1039/C1CS15106A
36.
Li
Y.-Q.
,
Yu
T.
,
Yang
T.-Y.
,
Zheng
L.-X.
, and
Liao
K.
, “
Bio‐inspired Nacre‐Like Composite Films Based on Graphene with Superior Mechanical, Electrical, and Biocompatible Properties
,”
Advanced Materials
24
, no. 
25
(July
2012
):
3426
3431
, https://doi.org/10.1002/adma.201200452
37.
Huang
W.
,
Restrepo
D.
,
Jung
J.-Y.
,
Su
F. Y.
,
Liu
Z.
,
Ritchie
R. O.
,
McKittrick
J.
,
Zavattieri
P.
, and
Kisailus
D.
, “
Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs
,”
Advanced Materials
31
, no. 
43
(October
2019
): 1901561, https://doi.org/10.1002/adma.201901561
38.
Hector
K. W.
,
Restrepo
D.
,
Bonilla
C. T.
,
Hecto
L. G.
 Jr.
,
Mankame
N.
, and
Zavattieri
P. D.
, “
Mechanics of Chiral Honeycomb Architectures with Phase Transformations
,”
Journal of Applied Mechanics
86
, no. 
11
(September
2019
): 111014, https://doi.org/10.1115/1.4044024
39.
Restrepo
D.
,
Mankame
N. D.
, and
Zavattieri
P. D.
, “
Phase Transforming Cellular Materials
,”
Extreme Mechanics Letters
4
(September
2015
):
52
60
, https://doi.org/10.1016/j.eml.2015.08.001
40.
Fleck
N. A.
,
Deshpande
V. S.
, and
Ashby
M. F.
, “
Micro-architectured Materials: Past, Present and Future
,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
466
, no. 
2121
(September
2010
):
2495
2516
, https://doi.org/10.1098/rspa.2010.0215
41.
Graupner
N.
,
Labonte
D.
,
Humburg
H.
,
Buzkan
T.
,
Dörgens
A.
,
Kelterer
W.
, and
Müssig
J.
, “
Functional Gradients in the Pericarp of the Green Coconut Inspire Asymmetric Fibre-Composites with Improved Impact Strength, and Preserved Flexural and Tensile Properties
,”
Bioinspiration & Biomimetics
12
, no. 
2
(February
2017
): 026009, https://doi.org/10.1088/1748-3190/aa5262
42.
Schmier
S.
,
Hosoda
N.
, and
Speck
T.
, “
Hierarchical Structure of the Cocos nucifera (Coconut) Endocarp: Functional Morphology and Its Influence on Fracture Toughness
,”
Molecules
25
, no. 
1
(January
2020
): 223, https://doi.org/10.3390/molecules25010223
43.
Moini
M.
,
Olek
J.
,
Magee
B.
,
Zavattieri
P.
, and
Youngblood
J.
, “
Additive Manufacturing and Characterization of Architectured Cement-Based Materials via X-ray Micro-computed Tomography
,” in
First RILEM International Conference on Concrete and Digital Fabrication – Digital Concrete 2018
(
Cham, Switzerland
:
Springer
,
2018
),
176
189
, https://doi.org/10.1007/978-3-319-99519-9_16
44.
Moini
M.
,
Olek
J.
,
Youngblood
J. P.
,
Magee
B.
, and
Zavattieri
P. D.
, “
Additive Manufacturing and Performance of Architectured Cement-Based Materials
,”
Advanced Materials
30
, no. 
43
(October
2018
): 1802123, https://doi.org/10.1002/adma.201802123
45.
Xu
Y.
,
Zhang
H.
,
Schlangen
E.
,
Luković
M.
, and
Šavija
B.
, “
Cementitious Cellular Composites with Auxetic Behavior
,”
Cement and Concrete Composites
111
(August
2020
): 103624, https://doi.org/10.1016/j.cemconcomp.2020.103624
46.
Milwich
M.
and
Speck
T.
, “
9 - Learning from Nature: Lightweight Constructions Using the ‘Technical Plant Stem,’
” in
Textiles, Polymers and Composites for Buildings
(
Cambridge, UK
:
Woodhead Publishing Limited
,
2010
),
290
309
, https://doi.org/10.1533/9780845699994.2.290
47.
Speck
T.
,
Bold
G.
,
Masselter
T.
,
Poppinga
S.
,
Schmier
S.
,
Thielen
M.
, and
Speck
O.
, “
Biomechanics and Functional Morphology of Plants–Inspiration for Biomimetic Materials and Structures
,” in
Plant Biomechanics
(
Cham, Swizerland
:
Springer
,
2018
),
399
433
, https://doi.org/10.1007/978-3-319-79099-2_18
48.
Mansouri
M. R.
,
Montazerian
H.
,
Schmauder
S.
, and
Kadkhodapour
J.
, “
3D-Printed Multimaterial Composites Tailored for Compliancy and Strain Recovery
,”
Composite Structures
184
(January
2018
):
11
17
, https://doi.org/10.1016/j.compstruct.2017.09.049
49.
Meza
L. R.
,
Das
S.
, and
Greer
J. R.
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
345
, no. 
6202
(September
2014
):
1322
1326
, https://doi.org/10.1126/science.1255908
50.
Rashed
M. G.
,
Ashraf
M.
,
Mines
R. A. W.
, and
Hazell
P. J.
, “
Metallic Microlattice Materials: A Current State of the Art on Manufacturing, Mechanical Properties and Applications
,”
Materials & Design
95
(April
2016
):
518
533
, https://doi.org/10.1016/j.matdes.2016.01.146
51.
Bauer
J.
,
Hengsbach
S.
,
Tesari
I.
,
Schwaiger
R.
, and
Kraft
O.
, “
High-Strength Cellular Ceramic Composites with 3D Microarchitecture
,”
Proceedings of the National Academy of Sciences
111
, no. 
7
(February
2014
):
2453
2458
, https://doi.org/10.1073/pnas.1315147111
52.
Standard Test Method for Tensile Properties of Plastics
, ASTM D638-14 (West Conshohocken, PA:
ASTM International
, approved December 15,
2014
), https://doi.org/10.1520/D0638-14
53.
Ultimaker “
Professional 3D Printing Made Accessible: Ultimaker
,” Ultimaker, https://doi.org/http://web.archive.org/web/20221222145037/https://ultimaker.com/
54.
MatterHackers “
3D Printers & Filament, 3D Printing Guides & More
,” MatterHackers, https://doi.org/http://web.archive.org/web/20221222150803/https://www.matterhackers.com/
55.
Autodesk “
3D Design, Engineering & Construction Software
,” Autodesk. https://doi.org/http://web.archive.org/web/20221222151041/https://www.autodesk.com/
56.
Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle
, ASTM B962-13 (West Conshohocken, PA:
ASTM International
, approved April 1,
2013
), https://doi.org/10.1520/B0962-13
This content is only available via PDF.
You do not currently have access to this content.