Abstract

Foam concrete has recently piqued the interest of defense engineering because of its innovative properties of absorbing energy, softening impact, exhausting oscillation, and lowering stress amplitude behavior. However, only a few investigations on foam concrete’s mechanistic behavior and energy absorption properties have been published. This study examines the effects of adding fly ash (sand replacement) and polypropylene fibers to foam concrete with design densities of 1,000 and 1,500 kg/m3 on fresh state features (stability and consistency), mechanical properties, and energy absorption capacities. The consistency of foam concrete increases with the addition of foam and fly ash, but the inclusion of fibers has a significant impact. Though the addition of fibers reduced the compressive strength of foam concrete, the bonding of fibers with the matrix is strengthened in fly ash–based mixes, resulting in increased strength, showing the synergistic effect. An improvised low-velocity drop-weight impact test is carried out on foam concrete target slabs produced with various mix compositions to investigate the impact mitigation properties of foam concrete under impact loading. The energy absorption capacity of different mixtures of foam concrete specimens is found to vary between 0.3 and 1.18 J using the conservation of energy law and assuming no energy losses. Because of the availability of sufficient bubble space for crushed debris and the better impact resistance provided by the fibers, mixes with more air and fibers displayed relatively more energy absorption. To examine the mixes based on the local area effect of impact loading, observations on both energy absorption and failure mechanism are carried out.

References

1.
Zhao
H.
,
Yu
H.
,
Yuan
Y.
, and
Zhu
H.
, “
Blast Mitigation Effect of the Foamed Cement-Base Sacrificial Cladding for Tunnel Structures
,”
Construction & Building Materials
94
(
2015
):
710
718
, https://doi.org/10.1016/j.conbuildmat.2015.07.076
2.
Larson
S. L.
,
Weiss
C. A.
 Jr.
,
Tom
J. G.
,
Malone
P. G.
, and
Fransen
E. J.
. Self-dispensing bullet trap buffer block. US Patent 7,111,847 B2, filed August 4, 2004, and issued September 26,
2006
.
3.
Zhou
H.
,
Jia
K.
,
Wang
X.
,
Xiong
M. X.
, and
Wang
Y.
, “
Experimental and Numerical Investigation of Low Velocity Impact Response of Foam Concrete Filled Auxetic Honeycombs
,”
Thin-Walled Structures
154
(
2020
): 106898, https://doi.org/10.1016/j.tws.2020.106898
4.
Tian
X.
,
Li
Q.
,
Lu
Z.
, and
Wang
Z.
, “
Experimental Study of Blast Mitigation by Foamed Concrete
,”
International Journal of Protective Structures
7
, no. 
2
(June
2016
):
179
192
, https://doi.org/10.1177/2041419616633323
5.
Fabian
G. L.
,
O’Donnell
R. H.
,
Tom
J. G.
, and
Malone
P. G.
, “
Use of Shock-Absorbing Concrete (SACON) as an Environmentally Compatible Bullet-Trapping Medium on Small-Arms Training Ranges
,” in
Proceedings of the Tri-Service Environmental Technology Workshop “Enhancing Readiness through Environmental Quality Technology”
(
Hampton, VA
:
Science and Technology Corporation
,
1996
),
187
196
.
6.
Fabian
G. L.
,
O’Donnell
R. H.
,
Tom
J. G.
, and
Malone
P. G.
,
Shock-Absorbing Concrete (SACON) Bullet Traps for Small Arms Ranges, PP-9609
(
Alexandria, VA
:
U.S. Department of Defense
,
1999
).
7.
Ahmad Mujahid
A. Z.
,
Hadipramana
J.
,
Samad
A. A. A.
,
Mohamad
N.
, and
Riza
F. V.
, “
Potential of RHA in Foamed Concrete Subjected to Dynamic Impact Loading
,”
Key Engineering Materials
594–595
(
2013
):
395
400
, https://doi.org/10.4028/www.scientific.net/KEM.594-595.395
8.
Samad
A. A. A.
,
Hadipramana
J.
,
Ahmad Mujahid
A. Z.
, and
Mohamad
N.
, “
Investigation on Energy Absorption of Slab Foamed Concrete Reinforced by Polypropylene Fibre Subjected to Impact Loading
,”
Advanced Materials Research
831
(December
2013
):
67
72
, https://doi.org/10.4028/www.scientific.net/AMR.831.67
9.
Ramamurthy
K.
,
Kunhanandan Nambiar
E. K.
, and
Indu Siva Ranjani
G.
, “
A Classification of Studies on Properties of Foam Concrete
,”
Cement and Concrete Composites
31
, no. 
6
(July
2009
):
388
396
, https://doi.org/10.1016/j.cemconcomp.2009.04.006
10.
Jones
M. R.
and
McCarthy
A.
, “
Preliminary Views on the Potential of Foamed Concrete as a Structural Material
,”
Magazine of Concrete Research
57
, no. 
1
(February
2005
):
21
31
, https://doi.org/10.1680/macr.2005.57.1.21
11.
Chica
L.
and
Alzate
A.
, “
Cellular Concrete Review: New Trends for Application in Construction
,”
Construction and Building Materials
200
(
2019
):
637
647
, https://doi.org/10.1016/j.conbuildmat.2018.12.136
12.
He
Y.
,
Gao
M.
,
Zhao
H.
, and
Zhao
Y.
, “
Behaviour of Foam Concrete under Impact Loading Based on SHPB Experiments
,”
Shock and Vibration
2019
(
2019
): 2065845, https://doi.org/10.1155/2019/2065845
13.
Hadipramana
J.
,
Samad
A. A. A.
,
Ibrahim
R.
,
Mohamad
N.
, and
Riza
F. V.
, “
The Energy Absorption of Modified Foamed Concrete with Rice Husk Ash Subjected to Impact Loading
,”
ARPN Journal of Engineering and Applied Sciences
11
, no. 
12
(June
2016
):
7437
7442
.
14.
Hadipramana
J.
,
Abdul Samad
A. A.
,
Mokhatar
S. N.
,
Riza
F. V.
,
Mohamad
N.
, and
Mohd Wahab
M. Y.
, “
An Investigation of Crater Diameter on Plain Slab Foamed Concrete Rice Husk Ash (FCRHA) Exposed to Low Impact Loading
,”
MATEC Web of Conferences
103
(
2017
): 02025, https://doi.org/10.1051/matecconf/201710302025
15.
Hadipramana
J.
,
Samad
A. A. A.
,
Ahmad Mujahid
A. Z.
,
Mohamad
N.
, and
Riza
F. V.
, “
Contribution of RHA Granules as Filler to Improve the Impact Resistance of Foamed Concrete
,”
Key Engineering Materials
594–595
(
2013
):
93
97
, https://doi.org/10.4028/www.scientific.net/KEM.594-595.93
16.
Hadipramana
J.
,
Samad
A. A. A.
,
Zaidi
A. M. A.
,
Mohammad
N.
, and
Ali
N.
, “
Contribution of Polypropylene Fibre in Improving Strength of Foamed Concrete
,”
Advanced Materials Research
626
(
2012
):
762
768
, https://doi.org/10.4028/www.scientific.net/AMR.626.762
17.
Ahmad Mujahid
A. Z.
,
Hadipramana
J.
,
Samad
A. A. A.
, and
Mohamad
N.
, “
Investigation on Impact Resistance Foamed Concrete Reinforced by Polypropylene Fibre
,”
Key Engineering Materials
594–595
(
2013
):
24
28
, https://doi.org/10.4028/www.scientific.net/KEM.594-595.24.
18.
Hazlin
A. R.
,
Iman
A.
,
Mohamad
N.
,
Samad
A. A. A.
, and
Ali
N.
, “
Microstructure and Tensile Strength of Foamed Concrete with Added Polypropylene Fibers
,”
MATEC Web of Conferences
103
(
2017
): 01013, https://doi.org/10.1051/matecconf/201710301013
19.
Bing
C.
,
Zhen
W.
, and
Ning
L.
, “
Experimental Research on Properties of High-Strength Foamed Concrete
,”
Journal of Materials in Civil Engineering
24
, no. 
1
(January
2012
):
113
118
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000353
20.
Kunhanandan Nambiar
E. K.
and
Ramamurthy
K.
, “
Influence of Filler Type on the Properties of Foam Concrete
,”
Cement and Concrete Composites
28
, no. 
5
(May
2006
):
475
480
, https://doi.org/10.1016/j.cemconcomp.2005.12.001
21.
Kearsley
E. P.
and
Wainwright
P. J.
, “
The Effect of High Fly Ash Content on the Compressive Strength of Concrete
,”
Cement and Concrete Research
31
, no. 
1
(January
2001
):
105
112
, https://doi.org/10.1016/S0008-8846(00)00430-0
22.
Jones
M.
and
McCarthy
A.
, “
Utilising Unprocessed Low-Lime Coal Fly Ash in Foamed Concrete
,”
Fuel
84
, no. 
11
(August
2005
):
1398
1409
, https://doi.org/10.1016/j.fuel.2004.09.030
23.
Khwairakpam
S.
and
Gandhi
I. S. R.
, “
Assessment of the Potential of a Naturally Available Foaming Agent for Use in the Production of Foam Concrete
,”
Materials Today: Proceedings
32
, Part
4
(
2020
):
896
903
, https://doi.org/10.1016/j.matpr.2020.04.528
24.
Selija
K.
and
Gandhi
I. S. R.
, “
Comprehensive Investigation into the Effect of the Newly Developed Natural Foaming Agents and Water to Solids Ratio on Foam Concrete Behaviour
,”
Journal of Building Engineering
58
(
2022
): 105042, https://doi.org/10.1016/j.jobe.2022.105042
25.
Nambiar
E. K. K.
and
Ramamurthy
K.
, “
Shrinkage Behavior of Foam Concrete
,”
Journal of Materials in Civil Engineering
21
, no. 
11
(November
2009
):
631
636
, https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631)
26.
Bai
T.
,
Jiang
W.
,
Chen
Y.
,
Yan
F.
,
Xu
Z.
, and
Fan
Y.
, “
Effect of Multiple Factors on Foam Stability in Foam Sclerotherapy
,”
Scientific Reports
8
, no. 
1
(
2018
): 15683, https://doi.org/10.1038/s41598-018-33992-w
27.
Verma
A.
,
Chauhan
G.
, and
Ojha
K.
, “
Characterization of α-Olefin Sulfonate Foam in Presence of Cosurfactants: Stability, Foamability and Drainage Kinetic Study
,”
Journal of Molecular Liquids
264
(
2018
):
458
469
, https://doi.org/10.1016/j.molliq.2018.05.061
28.
Ranjani
I. S.
and
Ramamurthy
K.
, “
Relative Assessment of Density and Stability of Foam Produced with Four Synthetic Surfactants
,”
Materials and Structures
43
, no. 
10
(December
2010
):
1317
1325
, https://doi.org/10.1617/s11527-010-9582-z
29.
Siva
M.
,
Ramamurthy
K.
, and
Dhamodharan
R.
, “
Sodium Salt Admixtures for Enhancing the Foaming Characteristics of Sodium Lauryl Sulphate
,”
Cement and Concrete Composites
57
(
2015
):
133
141
, https://doi.org/10.1016/j.cemconcomp.2014.12.011
30.
Jones
M.
,
McCarthy
M.
, and
Mccarthy
A.
, “
Moving Fly Ash Utilisation in Concrete Forward: A UK Perspective
,” in
2003 WOCA Proceedings Papers
(
Lexington, KY
:
University Press of Kentucky
,
2003
),
1
24
.
31.
Li
Q. M.
,
Reid
S. R.
,
Wen
H. M.
, and
Telford
A. R.
, “
Local Impact Effects of Hard Missiles on Concrete Targets
,”
International Journal of Impact Engineering
32
, nos. 
1–4
(December
2005
):
224
284
, https://doi.org/10.1016/j.ijimpeng.2005.04.005
32.
Jones
M. R.
and
Zheng
L.
, “
Energy Absorption of Foamed Concrete from Low-Velocity Impacts
,”
Magazine of Concrete Research
65
, no. 
4
(February
2013
):
209
219
, https://doi.org/10.1680/macr.12.00054
33.
Frew
D. J.
,
Forrestal
M. J.
, and
Cargile
J. D.
, “
The Effect of Concrete Target Diameter on Projectile Deceleration and Penetration Depth
,”
International Journal of Impact Engineering
32
, no. 
10
(October
2006
):
1584
1594
, https://doi.org/10.1016/j.ijimpeng.2005.01.012
34.
Li
Q. M.
,
Reid
S. R.
, and
Ahmad-Zaidi
A. M.
, “
Critical Impact Energies for Scabbing and Perforation of Concrete Target
,”
Nuclear Engineering and Design
236
, no. 
11
(June
2006
):
1140
1148
, https://doi.org/10.1016/j.nucengdes.2005.10.017
35.
Sebastiani
D.
,
Vilardi
G.
,
Bavasso
I.
,
Di Palma
L.
, and
Miliziano
S.
, “
Classification of Foam and Foaming Products for EPB Mechanized Tunnelling Based on Half-Life Time
,”
Tunnelling and Underground Space Technology
92
(
2019
): 103044, https://doi.org/10.1016/j.tust.2019.103044
36.
Hajimohammadi
A.
,
Ngo
T.
, and
Mendis
P.
, “
Enhancing the Strength of Pre-made Foams for Foam Concrete Applications
,”
Cement and Concrete Composites
87
(
2018
):
164
171
, https://doi.org/10.1016/j.cemconcomp.2017.12.014
37.
Sahu
S. S.
and
Gandhi
I. S. R.
, “
Studies on Influence of Characteristics of Surfactant and Foam on Foam Concrete Behaviour
,”
Journal of Building Engineering
40
(
2021
): 102333, https://doi.org/10.1016/j.jobe.2021.102333
38.
Sahu
S. S.
,
Gandhi
I. S. R.
, and
Khwairakpam
S.
, “
State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective
,”
Journal of The Institution of Engineers (India): Series A
99
, no. 
2
(June
2018
):
391
405
, https://doi.org/10.1007/s40030-018-0288-5
39.
Kunhanandan Nambiar
E. K.
and
Ramamurthy
K.
, “
Fresh State Characteristics of Foam Concrete
,”
Journal of Materials in Civil Engineering
20
, no. 
2
(February
2008
):
111
117
, https://doi.org/10.1061/(ASCE)0899-1561(2008)20:2(111)
40.
Boddepalli
U.
,
Panda
B.
, and
Ranjani Gandhi
I. S.
, “
Rheology and Printability of Portland Cement Based Materials: A Review
,”
Journal of Sustainable Cement-Based Materials
. Published ahead of print, September 15,
2022
, https://doi.org/10.1080/21650373.2022.2119620
41.
Sahu
S. S.
,
Ranjani Gandhi
I. S.
,
Kumar
A.
, and
Garg
S.
, “
Evaluation of Suitability of Carboxymethyl Cellulose in Performance Improvement of Sodium Lauryl Sulfate Foam and Compressive Strength of Foam Concrete
,”
Advances in Civil Engineering Materials
10
, no. 
1
(
2021
):
74
92
, https://doi.org/10.1520/ACEM20200083
42.
Gencel
O.
,
Kazmi
S. M. S.
,
Munir
M. J.
,
Kaplan
G.
,
Bayraktar
O. Y.
,
Yarar
D. O.
,
Karimipour
A.
, and
Ahmad
M. R.
, “
Influence of Bottom Ash and Polypropylene Fibers on the Physico-mechanical, Durability and Thermal Performance of Foam Concrete: An Experimental Investigation
,”
Construction and Building Materials
306
(
2021
): 124887, https://doi.org/10.1016/j.conbuildmat.2021.124887
43.
Siva
M.
,
Ramamurthy
K.
, and
Dhamodharan
R.
, “
Development of a Green Foaming Agent and Its Performance Evaluation
,”
Cement and Concrete Composites
80
(
2017
):
245
257
, https://doi.org/10.1016/j.cemconcomp.2017.03.012
44.
Karahan
O.
and
Atiş
C. D.
, “
The Durability Properties of Polypropylene Fiber Reinforced Fly Ash Concrete
,”
Materials & Design
32
, no. 
2
(February
2011
):
1044
1049
, https://doi.org/10.1016/j.matdes.2010.07.011
45.
Akid
A. S. M.
,
Hossain
S.
,
Munshi
M. I. U.
,
Elahi
M. M. A.
,
Sobuz
M. H. R.
,
Tam
V. W. Y.
, and
Islam
M. S.
, “
Assessing the Influence of Fly Ash and Polypropylene Fiber on Fresh, Mechanical and Durability Properties of Concrete
,”
Journal of King Saud University - Engineering Sciences
. Published ahead of print, June 24,
2021
, https://doi.org/10.1016/j.jksues.2021.06.005
46.
Ozbay
E.
,
Lachemi
M.
, and
Sevim
U. K.
, “
Compressive Strength, Abrasion Resistance and Energy Absorption Capacity of Rubberized Concretes with and without Slag
,”
Materials and Structures
44
, no. 
7
(August
2011
):
1297
1307
, https://doi.org/10.1617/s11527-010-9701-x
47.
Köksal
F.
,
Altun
F.
,
Yiğit
İ.
, and
Şahin
Y.
, “
Combined Effect of Silica Fume and Steel Fiber on the Mechanical Properties of High Strength Concretes
,”
Construction and Building Materials
22
, no. 
8
(August
2008
):
1874
1880
, https://doi.org/10.1016/j.conbuildmat.2007.04.017
This content is only available via PDF.
You do not currently have access to this content.