Abstract

Addressing the current global warming issues and carbon dioxide emission, the prime objective of the construction industry sector today is to develop energy-efficient environmentally friendly techniques to reduce thermal fluctuation inside buildings. Because phase change material (PCM) has good energy storage and release capacity, many researchers have shown interest in implementing PCM to increase thermal inertia of various building materials such as concrete, mortar, and gypsum board. PCM-incorporated building material is reported to reduce building energy consumption, shift peak energy demand, and reduce thermal swing, leading to improved thermal comfort inside the building. In addition to the aforementioned benefits, there are several other economic benefits and environmental benefits, as discussed in various sections in this paper. Although the use of PCM in buildings has a lot of advantages, it has some negative impacts on fresh state properties, mechanical behavior, and durability-related properties of building materials. However, it is to be noted that the extent of negative impact is dependent on the type of PCM, incorporation technique, dosage of PCM, and encapsulation material, which are also critically reviewed in this paper. To summarize, this paper provides a systematic classification of the literature on PCM in building materials in terms of properties of different types of PCM; PCM incorporation methods; effect of PCM on fresh state, mechanical, durability, and thermal properties of concrete; and various benefits of PCM. This paper also provides structured insight into various issues that hamper PCM’s robustness and commercial viability in buildings. Furthermore, challenges and recommendations are provided by summarizing the significant research gaps from the literature.

References

1.
Bentz
D. P.
and
Turpin
R.
, “
Potential Applications of Phase Change Materials in Concrete Technology
,”
Cement and Concrete Composites
29
, no. 
7
(August
2007
):
527
532
, https://doi.org/10.1016/j.cemconcomp.2007.04.007
2.
Olivieri
L.
,
Tenorio
J. A.
,
Revuelta
D.
,
Navarro
L.
, and
Cabeza
L. F.
, “
Developing a PCM-Enhanced Mortar for Thermally Active Precast Walls
,”
Construction and Building Materials
181
(August
2018
):
638
649
, https://doi.org/10.1016/j.conbuildmat.2018.06.013
3.
Zhu
N.
,
Ma
Z.
, and
Wang
S.
, “
Dynamic Characteristics and Energy Performance of Buildings Using Phase Change Materials: A Review
,”
Energy Conversion and Management
50
, no. 
12
(December
2009
):
3169
3181
, https://doi.org/10.1016/j.enconman.2009.08.019
4.
Budaiwi
I.
,
Abdou
A.
, and
Al-Homoud
M.
, “
Variations of Thermal Conductivity of Insulation Materials under Different Operating Temperatures: Impact on Envelope-Induced Cooling Load
,”
Journal of Architectural Engineering
8
, no. 
4
(December
2002
):
125
132
, https://doi.org/10.1061/(ASCE)1076-0431(2002)8:4(125)
5.
Wu
T.
and
Lei
C.
, “
A Review of Research and Development on Water Wall for Building Applications
,”
Energy and Buildings
112
(January
2016
):
198
208
, https://doi.org/10.1016/j.enbuild.2015.12.003
6.
Nghana
B.
and
Tariku
F.
, “
Phase Change Material’s (PCM) Impacts on the Energy Performance and Thermal Comfort of Buildings in a Mild Climate
,”
Building and Environment
99
(April
2016
):
221
238
, https://doi.org/10.1016/j.buildenv.2016.01.023
7.
Memon
S. A.
,
Cui
H.
,
Lo
T. Y.
, and
Li
Q.
, “
Development of Structural–Functional Integrated Concrete with Macro-encapsulated PCM for Thermal Energy Storage
,”
Applied Energy
150
(July
2015
):
245
257
, https://doi.org/10.1016/j.apenergy.2015.03.137
8.
Shi
X.
,
Memon
S. A.
,
Tang
W.
,
Cui
H.
, and
Xing
F.
, “
Experimental Assessment of Position of Macro Encapsulated Phase Change Material in Concrete Walls on Indoor Temperatures and Humidity Levels
,”
Energy and Buildings
71
(March
2014
):
80
87
, https://doi.org/10.1016/j.enbuild.2013.12.001
9.
Navarro
L.
,
de Gracia
A.
,
Niall
D.
,
Castell
A.
,
Browne
M.
,
McCormack
S. J.
,
Griffiths
P.
, and
Cabeza
L. F.
, “
Thermal Energy Storage in Building Integrated Thermal Systems: A Review. Part 2. Integration as Passive System
,”
Renewable Energy
85
(January
2016
):
1334
1356
, https://doi.org/10.1016/j.renene.2015.06.064
10.
Li
X.
,
Wei
Y.
,
Zhang
J.
, and
Jin
P.
, “
Design and Analysis of an Active Daylight Harvesting System for Building
,”
Renewable Energy
139
(August
2019
):
670
678
, https://doi.org/10.1016/j.renene.2019.02.097
11.
Cristofari
C.
,
Carutasiu
M. B.
,
Canaletti
J. L.
,
Norvaišienė
R.
,
Motte
F.
, and
Notton
G.
, “
Building Integration of Solar Thermal Systems-Example of a Refurbishment of a Church Rectory
,”
Renewable Energy
137
(July
2019
):
67
81
, https://doi.org/10.1016/j.renene.2018.05.026
12.
Müller
G.
,
Chavushoglu
M.
,
Kerri
M.
, and
Tsuzaki
T.
, “
A Resistance Type Vertical Axis Wind Turbine for Building Integration
,”
Renewable Energy
111
(October
2017
):
803
814
, https://doi.org/10.1016/j.renene.2017.05.017
13.
Qu
Y.
,
Chen
J.
,
Liu
L.
,
Xu
T.
,
Wu
H.
, and
Zhou
X.
, “
Study on Properties of Phase Change Foam Concrete Block Mixed with Paraffin/Fumed Silica Composite Phase Change Material
,”
Renewable Energy
150
(May
2020
):
1127
1135
, https://doi.org/10.1016/j.renene.2019.10.073
14.
Ascione
F.
,
Bianco
N.
,
De Masi
R. F.
,
de’ Rossi
F.
, and
Vanoli
G. P.
, “
Energy Refurbishment of Existing Buildings through the Use of Phase Change Materials: Energy Savings and Indoor Comfort in the Cooling Season
,”
Applied Energy
113
(January
2014
):
990
1007
, https://doi.org/10.1016/j.apenergy.2013.08.045
15.
Wagh
C. D.
,
Indu Siva Ranjani
G.
, and
Kamisetty
A.
, “
Thermal Properties of Foamed Concrete: A Review
,” in
Third International Conference on Innovative Technologies for Clean and Sustainable Development
(
Cham, Switzerland
:
Springer
,
2021
),
113
137
, https://doi.org/10.1007/978-3-030-51485-3_9
16.
Baetens
R.
,
Jelle
B. P.
, and
Gustavsen
A.
, “
Phase Change Materials for Building Applications: A State-of-the-Art Review
,”
Energy and Buildings
42
, no. 
9
(September
2010
):
1361
1368
, https://doi.org/10.1016/j.enbuild.2010.03.026
17.
D’Alessandro
A.
,
Pisello
A. L.
,
Fabiani
C.
,
Ubertini
F.
,
Cabeza
L. F.
, and
Cotana
F.
, “
Multifunctional Smart Concretes with Novel Phase Change Materials: Mechanical and Thermo-energy Investigation
,”
Applied Energy
212
(February
2018
):
1448
1461
, https://doi.org/10.1016/j.apenergy.2018.01.014
18.
Essid
N.
,
Loulizi
A.
, and
Neji
J.
, “
Compressive Strength and Hygric Properties of Concretes Incorporating Microencapsulated Phase Change Material
,”
Construction and Building Materials
222
(October
2019
):
254
262
, https://doi.org/10.1016/j.conbuildmat.2019.06.156
19.
Khudhair
A. M.
and
Farid
M. M.
, “
A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials
,”
Energy Conversion and Management
45
, no. 
2
(January
2004
):
263
275
, https://doi.org/10.1016/S0196-8904(03)00131-6
20.
Jayalath
A.
,
Nicolas
R. S.
,
Sofi
M.
,
Shanks
R.
,
Ngo
T.
,
Aye
L.
, and
Mendis
P.
, “
Properties of Cementitious Mortar and Concrete Containing Micro-encapsulated Phase Change Materials
,”
Construction and Building Materials
120
(September
2016
):
408
417
, https://doi.org/10.1016/j.conbuildmat.2016.05.116
21.
Hunger
M.
,
Entrop
A. G.
,
Mandilaras
I.
,
Brouwers
H. J. H.
, and
Founti
M.
, “
The Behavior of Self-Compacting Concrete Containing Micro-encapsulated Phase Change Materials
,”
Cement and Concrete Composites
31
, no. 
10
(November
2009
):
731
743
, https://doi.org/10.1016/j.cemconcomp.2009.08.002
22.
Li
M.
,
Wu
Z.
, and
Tan
J.
, “
Heat Storage Properties of the Cement Mortar Incorporated with Composite Phase Change Material
,”
Applied Energy
103
(March
2013
):
393
399
, https://doi.org/10.1016/j.apenergy.2012.09.057
23.
Nematchoua
M. K.
,
Noelson
J. C. V.
,
Saadi
I.
,
Kenfack
H.
,
Andrianaharinjaka
A.-Z. F. R.
,
Ngoumdoum
D. F.
,
Sela
J. B.
, and
Reiter
S.
, “
Application of Phase Change Materials, Thermal Insulation, and External Shading for Thermal Comfort Improvement and Cooling Energy Demand Reduction in an Office Building under Different Coastal Tropical Climates
,”
Solar Energy
207
(September
2020
):
458
470
, https://doi.org/10.1016/j.solener.2020.06.110
24.
Niall
D.
,
West
R. P.
, and
McCormack
S.
, “
Assessment of Two Methods of Enhancing Thermal Mass Performance of Concrete through the Incorporation of Phase-Change Materials
,”
Journal of Sustainable Design & Applied Research
4
, no. 
1
(
2016
):
1
9
, https://doi.org/10.21427/D7H590
25.
Das
R.
,
Siva Ranjani Gandhi
I.
, and
Muthukumar
P.
, “
Use of Agglomerated Micro-encapsulated Phase Change Material in Cement Mortar as Thermal Energy Storage Material for Buildings
,”
Materials Today: Proceedings
65
, Part
2
(
2022
):
808
814
, https://doi.org/10.1016/j.matpr.2022.03.316
26.
Sivanathan
A.
,
Dou
Q.
,
Wang
Y.
,
Li
Y.
,
Corker
J.
,
Zhou
Y.
, and
Fan
M.
, “
Phase Change Materials for Building Construction: An Overview of Nano-/Micro-encapsulation
,”
Nanotechnology Reviews
9
, no. 
1
(January
2020
):
896
921
, https://doi.org/10.1515/ntrev-2020-0067
27.
Su
W.
,
Darkwa
J.
, and
Kokogiannakis
G.
, “
Review of Solid–Liquid Phase Change Materials and Their Encapsulation Technologies
,”
Renewable and Sustainable Energy Reviews
48
(August
2015
):
373
391
, https://doi.org/10.1016/j.rser.2015.04.044
28.
Memon
S. A.
, “
Phase Change Materials Integrated in Building Walls: A State of the Art Review
,”
Renewable and Sustainable Energy Reviews
31
(March
2014
):
870
906
, https://doi.org/10.1016/j.rser.2013.12.042
29.
Ling
T.-C.
and
Poon
C.-S.
, “
Use of Phase Change Materials for Thermal Energy Storage in Concrete: An Overview
,”
Construction and Building Materials
46
(September
2013
):
55
62
, https://doi.org/10.1016/j.conbuildmat.2013.04.031
30.
Marani
A.
and
Nehdi
M. L.
, “
Integrating Phase Change Materials in Construction Materials: Critical Review
,”
Construction and Building Materials
217
(August
2019
):
36
49
, https://doi.org/10.1016/j.conbuildmat.2019.05.064
31.
Berardi
U.
and
Gallardo
A. A.
, “
Properties of Concretes Enhanced with Phase Change Materials for Building Applications
,”
Energy and Buildings
199
(September
2019
):
402
414
, https://doi.org/10.1016/j.enbuild.2019.07.014
32.
Liu
Z.
,
Yu
Z.
,
Yang
T.
,
Qin
D.
,
Li
S.
,
Zhang
G.
,
Haghighat
F.
, and
Joybari
M. M.
, “
A Review on Macro-encapsulated Phase Change Material for Building Envelope Applications
,”
Building and Environment
144
(October
2018
):
281
294
, https://doi.org/10.1016/j.buildenv.2018.08.030
33.
Tyagi
V. V.
,
Kaushik
S. C.
,
Tyagi
S. K.
, and
Akiyama
T.
, “
Development of Phase Change Materials Based Microencapsulated Technology for Buildings: A Review
,”
Renewable and Sustainable Energy Reviews
15
, no. 
2
(February
2011
):
1373
1391
, https://doi.org/10.1016/j.rser.2010.10.006
34.
Barzin
R.
,
Chen
J. J. J.
,
Young
B. R.
, and
Farid
M. M.
, “
Application of PCM Energy Storage in Combination with Night Ventilation for Space Cooling
,”
Applied Energy
158
(November
2015
):
412
421
, https://doi.org/10.1016/j.apenergy.2015.08.088
35.
Nayak
J. K.
, “
Thermal Performance of a Water Wall
,”
Building and Environment
22
, no. 
1
(
1987
):
83
90
, https://doi.org/10.1016/0360-1323(87)90045-X
36.
Sørensen
B.
, “
Experiments with Energy Storage in a High-Latitude Greenhouse
,”
Solar Energy
42
, no. 
4
(
1989
):
293
301
, https://doi.org/10.1016/0038-092X(89)90031-5
37.
Upadhya
M.
,
Tiwari
G. N.
, and
Rai
S. N.
, “
Optimum Distribution of Water-Wall Thickness in a Transwall
,”
Energy and Buildings
17
, no. 
2
(
1991
):
97
102
, https://doi.org/10.1016/0378-7788(91)90002-K
38.
Fernández-González
A.
, “
Analysis of the Thermal Performance and Comfort Conditions Produced by Five Different Passive Solar Heating Strategies in the United States Midwest
,”
Solar Energy
81
, no. 
5
(May
2007
):
581
593
, https://doi.org/10.1016/j.solener.2006.09.010
39.
Zhou
D.
,
Zhao
C. Y.
, and
Tian
Y.
, “
Review on Thermal Energy Storage with Phase Change Materials (PCMs) in Building Applications
,”
Applied Energy
92
(April
2012
):
593
605
, https://doi.org/10.1016/j.apenergy.2011.08.025
40.
Kuznik
F.
,
David
D.
,
Johannes
K.
, and
Roux
J.-J.
, “
A Review on Phase Change Materials Integrated in Building Walls
,”
Renewable and Sustainable Energy Reviews
15
, no. 
1
(January
2011
):
379
391
, https://doi.org/10.1016/j.rser.2010.08.019
41.
Zhang
Z.
,
Shi
G.
,
Wang
S.
,
Fang
X.
, and
Liu
X.
, “
Thermal Energy Storage Cement Mortar Containing N-Octadecane/Expanded Graphite Composite Phase Change Material
,”
Renewable Energy
50
(February
2013
):
670
675
, https://doi.org/10.1016/j.renene.2012.08.024
42.
Lecompte
T.
,
Le Bideau
P.
,
Glouannec
P.
,
Nortershauser
D.
, and
Le Masson
S.
, “
Mechanical and Thermo-physical Behaviour of Concretes and Mortars Containing Phase Change Material
,”
Energy and Buildings
94
(May
2015
):
52
60
, https://doi.org/10.1016/j.enbuild.2015.02.044
43.
Fernandes
F.
,
Manari
S.
,
Aguayo
M.
,
Santos
K.
,
Oey
T.
,
Wei
Z.
,
Falzone
G.
,
Neithalath
N.
, and
Sant
G.
, “
On the Feasibility of Using Phase Change Materials (PCMs) to Mitigate Thermal Cracking in Cementitious Materials
,”
Cement and Concrete Composites
51
(August
2014
):
14
26
, https://doi.org/10.1016/j.cemconcomp.2014.03.003
44.
Regin
A. F.
,
Solanki
S. C.
, and
Saini
J. S.
, “
Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review
,”
Renewable and Sustainable Energy Reviews
12
, no. 
9
(December
2008
):
2438
2458
, https://doi.org/10.1016/j.rser.2007.06.009
45.
Feldman
D.
,
Banu
D.
,
Hawes
D.
, and
Ghanbari
E.
, “
Obtaining an Energy Storing Building Material by Direct Incorporation of an Organic Phase Change Material in Gypsum Wallboard
,”
Solar Energy Materials
22
, nos.
2–3
(July
1991
):
231
242
, https://doi.org/10.1016/0165-1633(91)90021-C
46.
Figueiredo
A.
,
Lapa
J.
,
Vicente
R.
, and
Cardoso
C.
, “
Mechanical and Thermal Characterization of Concrete with Incorporation of Microencapsulated PCM for Applications in Thermally Activated Slabs
,”
Construction and Building Materials
112
(June
2016
):
639
647
, https://doi.org/10.1016/j.conbuildmat.2016.02.225
47.
Zhang
D.
,
Li
Z.
,
Zhou
J.
, and
Wu
K.
, “
Development of Thermal Energy Storage Concrete
,”
Cement and Concrete Research
34
, no. 
6
(June
2004
):
927
934
, https://doi.org/10.1016/j.cemconres.2003.10.022
48.
Hawes
D. W.
,
Feldman
D.
, and
Banu
D.
, “
Latent Heat Storage in Building Materials
,”
Energy and Buildings
20
, no. 
1
(
1993
):
77
86
, https://doi.org/10.1016/0378-7788(93)90040-2
49.
Eddhahak-Ouni
A.
,
Drissi
S.
,
Colin
J.
,
Neji
J.
, and
Care
S.
, “
Experimental and Multi-scale Analysis of the Thermal Properties of Portland Cement Concretes Embedded with Microencapsulated Phase Change Materials (PCMs)
,”
Applied Thermal Engineering
64
, nos.
1–2
(March
2014
):
32
39
, https://doi.org/10.1016/j.applthermaleng.2013.11.050
50.
Cui
H.
,
Liao
W.
,
Mi
X.
,
Lo
T. Y.
, and
Chen
D.
, “
Study on Functional and Mechanical Properties of Cement Mortar with Graphite-Modified Microencapsulated Phase-Change Materials
,”
Energy and Building
105
(October
2015
):
273
284
, https://doi.org/10.1016/j.enbuild.2015.07.043
51.
Kalnæs
S. E.
and
Jelle
B. P.
, “
Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities
,”
Energy and Buildings
94
(May
2015
):
150
176
, https://doi.org/10.1016/j.enbuild.2015.02.023
52.
M’hamdi
Y.
,
Baba
K.
,
Tajayouti
M.
, and
Nounah
A.
, “
Energy, Environmental, and Economic Analysis of Different Buildings Envelope Integrated with Phase Change Materials in Different Climates
,”
Solar Energy
243
(September
2022
):
91
102
, https://doi.org/10.1016/j.solener.2022.07.031
53.
Mehrizi
A. A.
,
Karimi-Maleh
H.
,
Naddafi
M.
, and
Karimi
F.
, “
Application of Bio-Based Phase Change Materials for Effective Heat Management
,”
Journal of Energy Storage
61
(May
2023
): 106859, https://doi.org/10.1016/j.est.2023.106859
54.
Li
D.
,
Zhuang
B.
,
Chen
Y.
,
Li
B.
,
Landry
V.
,
Kaboorani
A.
,
Wu
Z.
, and
Wang
X. A.
, “
Incorporation Technology of Bio-Based Phase Change Materials for Building Envelope: A Review
,”
Energy and Buildings
260
(April
2022
): 111920, https://doi.org/10.1016/j.enbuild.2022.111920
55.
Wei
Z.
,
Falzone
G.
,
Wang
B.
,
Thiele
A.
,
Puerta-Falla
G.
,
Pilon
L.
,
Neithalath
N.
, and
Sant
G.
, “
The Durability of Cementitious Composites Containing Microencapsulated Phase Change Materials
,”
Cement and Concrete Composites
81
(August
2017
):
66
76
, https://doi.org/10.1016/j.cemconcomp.2017.04.010
56.
Koschenz
M.
and
Lehmann
B.
, “
Development of a Thermally Activated Ceiling Panel with PCM for Application in Lightweight and Retrofitted Buildings
,”
Energy and Building
36
, no. 
6
(June
2004
):
567
578
, https://doi.org/10.1016/j.enbuild.2004.01.029
57.
Xu
B.
and
Li
Z.
, “
Paraffin/Diatomite Composite Phase Change Material Incorporated Cement-Based Composite for Thermal Energy Storage
,”
Applied Energy
105
(May
2013
):
229
237
, https://doi.org/10.1016/j.apenergy.2013.01.005
58.
Li
J. F.
,
Lu
W.
,
Zeng
Y. B.
, and
Luo
Z. P.
, “
Simultaneous Enhancement of Latent Heat and Thermal Conductivity of Docosane-Based Phase Change Material in the Presence of Spongy Graphene
,”
Solar Energy Materials and Solar Cells
128
(September
2014
):
48
51
, https://doi.org/10.1016/j.solmat.2014.05.018
59.
Zeng
J.
,
Zhu
F.
,
Yu
S.
,
Zhu
L.
,
Cao
Z.
,
Sun
L.
,
Deng
G.
,
Yan
W.
, and
Zhang
L.
, “
Effects of Copper Nanowires on the Properties of an Organic Phase Change Material
,”
Solar Energy Materials and Solar Cells
105
(October
2012
):
174
178
, https://doi.org/10.1016/j.solmat.2012.06.013
60.
Xiao
X.
and
Zhang
P.
, “
Morphologies and Thermal Characterization of Paraffin/Carbon Foam Composite Phase Change Material
,”
Solar Energy Materials and Solar Cells
117
(October
2013
):
451
461
, https://doi.org/10.1016/j.solmat.2013.06.037
61.
Inoue
T.
,
Hisatsugu
Y.
,
Ishikawa
R.
, and
Suzuki
M.
, “
Solid–Liquid Phase Behavior of Binary Fatty Acid Mixtures: 2. Mixtures of Oleic Acid with Lauric Acid, Myristic Acid, and Palmitic Acid
,”
Chemistry and Physics of Lipids
127
, no. 
2
(February
2004
):
161
173
, https://doi.org/10.1016/j.chemphyslip.2003.10.013
62.
Shilei
L.
,
Neng
Z.
, and
Guohui
F.
, “
Impact of Phase Change Wall Room on Indoor Thermal Environment in Winter
,”
Energy and Buildings
38
, no. 
1
(January
2006
):
18
24
, https://doi.org/10.1016/j.enbuild.2005.02.007
63.
Xie
N.
,
Huang
Z.
,
Luo
Z.
,
Gao
X.
,
Fang
Y.
, and
Zhang
Z.
, “
Inorganic Salt Hydrate for Thermal Energy Storage
,”
Applied Sciences
7
, no. 
12
(December
2017
): 1317, https://doi.org/10.3390/app7121317
64.
Cabeza
L. F.
,
Castell
A.
,
Barreneche
C.
,
de Gracia
A.
, and
Fernández
A. I.
, “
Materials Used as PCM in Thermal Energy Storage in Buildings: A Review
,”
Renewable and Sustainable Energy Reviews
15
, no. 
3
(April
2011
):
1675
1695
, https://doi.org/10.1016/j.rser.2010.11.018
65.
Feng
G.
,
Xu
X.
,
He
N.
,
Li
H.
, and
Huang
K.
, “
Testing Research of Energy Storage System during Na2SO4·10H2O Phase Change
,”
Materials Research Innovations
19
, no. 
sup5
(
2015
):
S5-972
S5-977
, https://doi.org/10.1179/1432891714Z.0000000001232
66.
Sutjahja
I. M.
,
Rahayu
S.
A. U.,
Kurniati
N.
,
Pallitine
I. D.
, and
Kurnia
D.
, “
The Role of Chemical Additives to the Phase Change Process of CaCl2.6H2O to Optimize Its Performance as Latent Heat Energy Storage System
,”
Journal of Physics: Conference Series
739
, no. 
1
(
2016
): 012064, https://doi.org/10.1088/1742-6596/739/1/012064
67.
Li
X.
,
Zhou
Y.
,
Nian
H.
,
Ren
X.
,
Dong
O.
,
Hai
C.
,
Shen
Y.
, and
Zeng
J.
, “
Phase Change Behavior of Latent Heat Storage Media Based on Calcium Chloride Hexahydrate Composites Containing Strontium Chloride Hexahydrate and Oxidation Expandable Graphite
,”
Applied Thermal Engineering
102
(June
2016
):
38
44
, https://doi.org/10.1016/j.applthermaleng.2016.03.098
68.
Choi
J. C.
and
Kim
S. D.
, “
Heat-Transfer Characteristics of a Latent Heat Storage System Using MgCl2·6H2O
,”
Energy
17
, no. 
12
(December
1992
):
1153
1164
, https://doi.org/10.1016/0360-5442(92)90004-J
69.
Pilar
R.
,
Svoboda
L.
,
Honcova
P.
, and
Oravova
L.
, “
Study of Magnesium Chloride Hexahydrate as Heat Storage Material
,”
Thermochimica Acta
546
(October
2012
):
81
86
, https://doi.org/10.1016/j.tca.2012.07.021
70.
Ushak
S.
,
Gutierrez
A.
,
Barreneche
C.
,
Fernandez
A. I.
,
Grágeda
M.
, and
Cabeza
L. F.
, “
Reduction of the Subcooling of Bischofite with the Use of Nucleatings Agents
,”
Solar Energy Materials and Solar Cells
157
(December
2016
):
1011
1018
, https://doi.org/10.1016/j.solmat.2016.08.015
71.
Xu
X.
,
Cui
H.
,
Memon
S. A.
,
Yang
H.
, and
Tang
W.
, “
Development of Novel Composite PCM for Thermal Energy Storage Using CaCl2·6H2O with Graphene Oxide and SrCl2·6H2O
,”
Energy and Building
156
(December
2017
):
163
172
, https://doi.org/10.1016/j.enbuild.2017.09.081
72.
Hawes
D. W.
,
Banu
D.
, and
Feldman
D.
, “
The Stability of Phase Change Materials in Concrete
,”
Solar Energy Materials and Solar Cells
27
, no. 
2
(July
1992
):
103
118
, https://doi.org/10.1016/0927-0248(92)90113-4
73.
Hawes
D. W.
and
Feldman
D.
, “
Absorption of Phase Change Materials in Concrete
,”
Solar Energy Materials and Solar Cells
27
, no. 
2
(July
1992
):
91
101
, https://doi.org/10.1016/0927-0248(92)90112-3
74.
Kaasinen
H.
, “
The Absorption of Phase Change Substances into Commonly Used Building Materials
,”
Solar Energy Materials and Solar Cells
27
, no. 
2
(July
1992
):
173
179
, https://doi.org/10.1016/0927-0248(92)90118-9
75.
Hadjieva
M.
,
Stoykov
R.
, and
Filipova
T.
, “
Composite Salt-Hydrate Concrete System for Building Energy Storage
,”
Renewable Energy
19
, nos.
1–2
(January–February
2000
):
111
115
, https://doi.org/10.1016/S0960-1481(99)00024-5
76.
Lee
T.
,
Hawes
D. W.
,
Banu
D.
, and
Feldman
D.
, “
Control Aspects of Latent Heat Storage and Recovery in Concrete
,”
Solar Energy Materials and Solar Cells
62
, no. 
3
(May
2000
):
217
237
, https://doi.org/10.1016/S0927-0248(99)00128-2
77.
Jamekhorshid
A.
,
Sadrameli
S. M.
, and
Farid
M.
, “
A Review of Microencapsulation Methods of Phase Change Materials (PCMs) as a Thermal Energy Storage (TES) Medium
,”
Renewable and Sustainable Energy Reviews
31
(March
2014
):
531
542
, https://doi.org/10.1016/j.rser.2013.12.033
78.
Rathore
P. K. S.
and
Shukla
S. K.
, “
An Experimental Evaluation of Thermal Behavior of the Building Envelope Using Macroencapsulated PCM for Energy Savings
,”
Renewable Energy
149
(April
2020
):
1300
1313
, https://doi.org/10.1016/j.renene.2019.10.130
79.
Alam
T. E.
,
Dhau
J. S.
,
Goswami
D. Y.
, and
Stefanakos
E.
, “
Macroencapsulation and Characterization of Phase Change Materials for Latent Heat Thermal Energy Storage Systems
,”
Applied Energy
154
(September
2015
):
92
101
, https://doi.org/10.1016/j.apenergy.2015.04.086
80.
Kenisarin
M.
and
Mahkamov
K.
, “
Solar Energy Storage Using Phase Change Materials
,”
Renewable and Sustainable Energy Reviews
11
, no. 
9
(December
2007
):
1913
1965
, https://doi.org/10.1016/j.rser.2006.05.005
81.
Oliver
A.
and
Baez
M. I.
, “
Morphological Study of Gypsum Boards with PCM through Scanning Electron Microscopy
,”
Journal of Materials in Civil Engineering
24
, no. 
4
(April
2012
):
401
408
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000402
82.
Tomlinson
J. J.
,
Thermal Energy Storage Technical Progress Report, April 1990-March 1991, No. ORNL/TM-12081
(
Oak Ridge, TN
:
USDOE
,
1991
).
83.
Shapiro
M. M.
,
Feldman
D.
,
Hawes
D.
, and
Banu
D. P. C. M.
, “
Thermal Storage in Dry Wall Using Organic Phase-Change Material
,”
Passive Solar Journal
4
, no. 
4
(
1987
):
419
438
.
84.
Athienitis
A. K.
,
Liu
C.
,
Hawes
D.
,
Banu
D.
, and
Feldman
D.
, “
Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage
,”
Building and Environment
32
, no. 
5
(September
1997
):
405
410
, https://doi.org/10.1016/S0360-1323(97)00009-7
85.
Borreguero
A. M.
,
Garrido
I.
,
Valverde
J. L.
,
Rodríguez
J. F.
, and
Carmona
M.
, “
Development of Smart Gypsum Composites by Incorporating Thermoregulating Microcapsules
,”
Energy and Buildings
76
(June
2014
):
631
639
, https://doi.org/10.1016/j.enbuild.2014.03.005
86.
Abden
M. J.
,
Tao
Z.
,
Pan
Z.
,
George
L.
, and
Wuhrer
R.
, “
Inclusion of Methyl Stearate/Diatomite Composite in Gypsum Board Ceiling for Building Energy Conservation
,”
Applied Energy
259
(February
2020
): 114113, https://doi.org/10.1016/j.apenergy.2019.114113
87.
Zhou
G.
,
Zhang
Y.
,
Wang
X.
,
Lin
K.
, and
Xiao
W.
, “
An Assessment of Mixed Type PCM-Gypsum and Shape-Stabilized PCM Plates in a Building for Passive Solar Heating
,”
Solar Energy
81
, no. 
11
(November
2007
):
1351
1360
, https://doi.org/10.1016/j.solener.2007.01.014
88.
Wei
Z.
,
Falzone
G.
,
Das
S.
,
Saklani
N.
,
Le Pape
Y.
,
Pilon
L.
,
Neithalath
N.
, and
Sant
G.
, “
Restrained Shrinkage Cracking of Cementitious Composites Containing Soft PCM Inclusions: A Paste (Matrix) Controlled Response
,”
Materials & Design
132
(October
2017
):
367
374
, https://doi.org/10.1016/j.matdes.2017.06.066
89.
Fenollera
M.
,
Míguez
J. L.
,
Goicoechea
I.
,
Lorenzo
J.
, and
Ángel Álvarez
M.
, “
The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete
,”
Materials
6
, no. 
8
(August
2013
):
3530
3546
, https://doi.org/10.3390/ma6083530
90.
Snoeck
D.
,
Priem
B.
,
Dubruel
P.
, and
De Belie
N.
, “
Encapsulated Phase-Change Materials as Additives in Cementitious Materials to Promote Thermal Comfort in Concrete Constructions
,”
Materials and Structures
49
, no. 
1
(January
2016
):
225
239
, https://doi.org/10.1617/s11527-014-0490-5
91.
Pilehvar
S.
,
Cao
V. D.
,
Szczotok
A. M.
,
Valentini
L.
,
Salvioni
D.
,
Magistri
M.
,
Pamies
R.
, and
Kjøniksen
A.-L.
, “
Mechanical Properties and Microscale Changes of Geopolymer Concrete and Portland Cement Concrete Containing Micro-encapsulated Phase Change Materials
,”
Cement and Concrete Research
100
(October
2017
):
341
349
, https://doi.org/10.1016/j.cemconres.2017.07.012
92.
Ren
M.
,
Wen
X.
,
Gao
X.
, and
Liu
Y.
, “
Thermal and Mechanical Properties of Ultra-High Performance Concrete Incorporated with Microencapsulated Phase Change Material
,”
Construction and Building Materials
273
(March
2021
): 121714, https://doi.org/10.1016/j.conbuildmat.2020.121714
93.
Li
X.
,
Sanjayan
J. G.
, and
Wilson
J. L.
, “
Fabrication and Stability of Form-Stable Diatomite/Paraffin Phase Change Material Composites
,”
Energy and Buildings
76
(June
2014
):
284
294
, https://doi.org/10.1016/j.enbuild.2014.02.082
94.
Cui
H.
,
Tang
W.
,
Qin
Q.
,
Xing
F.
,
Liao
W.
, and
Wen
H.
, “
Development of Structural-Functional Integrated Energy Storage Concrete with Innovative Macro-encapsulated PCM by Hollow Steel Ball
,”
Applied Energy
185
, Part 1 (January
2017
):
107
118
, https://doi.org/10.1016/j.apenergy.2016.10.072
95.
Wang
R.
,
Ren
M.
,
Gao
X.
, and
Qin
L.
, “
Preparation and Properties of Fatty Acids Based Thermal Energy Storage Aggregate Concrete
,”
Construction and Building Materials
165
(March
2018
):
1
10
, https://doi.org/10.1016/j.conbuildmat.2018.01.034
96.
Niall
D.
,
Kinnane
O.
,
West
R. P.
, and
McCormack
S.
, “
Mechanical and Thermal Evaluation of Different Types of PCM–Concrete Composite Panels
,”
Journal of Structural Integrity and Maintenance
2
, no. 
2
(
2017
):
100
108
, https://doi.org/10.1080/24705314.2017.1318039
97.
Cellat
K.
,
Tezcan
F.
,
Beyhan
B.
,
Kardaş
G.
, and
Paksoy
H.
, “
A Comparative Study on Corrosion Behavior of Rebar in Concrete with Fatty Acid Additive as Phase Change Material
,”
Construction and Building Materials
143
(July
2017
):
490
500
, https://doi.org/10.1016/j.conbuildmat.2017.03.165
98.
Djamai
Z. I.
,
Salvatore
F.
,
Si Larbi
A.
,
Cai
G.
, and
El Mankibi
M.
, “
Multiphysics Analysis of Effects of Encapsulated Phase Change Materials (PCMs) in Cement Mortars
,”
Cement and Concrete Research
119
(May
2019
):
51
63
, https://doi.org/10.1016/j.cemconres.2019.02.002
99.
Haurie
L.
,
Serrano
S.
,
Bosch
M.
,
Fernandez
A. I.
, and
Cabeza
L. F.
, “
Single Layer Mortars with Microencapsulated PCM: Study of Physical and Thermal Properties, and Fire Behaviour
,”
Energy and Buildings
111
(January
2016
):
393
400
, https://doi.org/10.1016/j.enbuild.2015.11.028
100.
Sakulich
A. R.
and
Bentz
D. P.
, “
Incorporation of Phase Change Materials in Cementitious Systems via Fine Lightweight Aggregate
,”
Construction and Building Materials
35
(October
2012
):
483
490
, https://doi.org/10.1016/j.conbuildmat.2012.04.042
101.
Ma
Q.
and
Bai
M.
, “
Mechanical Behavior, Energy-Storing Properties and Thermal Reliability of Phase-Changing Energy-Storing Concrete
,”
Construction and Building Materials
176
(July
2018
):
43
49
, https://doi.org/10.1016/j.conbuildmat.2018.04.226
102.
Sharifi
N. P.
and
Mahboub
K. C.
, “
Application of a PCM-Rich Concrete Overlay to Control Thermal Induced Curling Stresses in Concrete Pavements
,”
Construction and Building Materials
183
(September
2018
):
502
512
, https://doi.org/10.1016/j.conbuildmat.2018.06.179
103.
Esmaeeli
H. S.
,
Farnam
Y.
,
Haddock
J. E.
,
Zavattieri
P. D.
, and
Weiss
W. J.
, “
Numerical Analysis of the Freeze-Thaw Performance of Cementitious Composites that Contain Phase Change Material (PCM)
,”
Materials & Design
145
(May
2018
):
74
87
, https://doi.org/10.1016/j.matdes.2018.02.056
104.
Aguayo
M.
,
Das
S.
,
Castro
C.
,
Kabay
N.
,
Sant
G.
, and
Neithalath
N.
, “
Porous Inclusions as Hosts for Phase Change Materials in Cementitious Composites: Characterization, Thermal Performance, and Analytical Models
,”
Construction and Building Materials
134
(March
2017
):
574
584
, https://doi.org/10.1016/j.conbuildmat.2016.12.185
105.
Min
H.-W.
,
Kim
S.
, and
Kim
H. S.
, “
Investigation on Thermal and Mechanical Characteristics of Concrete Mixed with Shape Stabilized Phase Change Material for Mix Design
,”
Construction and Building Materials
149
(September
2017
):
749
762
, https://doi.org/10.1016/j.conbuildmat.2017.05.176
106.
Sovetova
M.
,
Memon
S. A.
, and
Kim
J.
, “
Thermal Performance and Energy Efficiency of Building Integrated with PCMs in Hot Desert Climate Region
,”
Solar Energy
189
(September
2019
):
357
371
, https://doi.org/10.1016/j.solener.2019.07.067
107.
Zhang
H.
,
Wang
X.
, and
Wu
D.
, “
Silica Encapsulation of N-Octadecane via Sol–Gel Process: A Novel Microencapsulated Phase-Change Material with Enhanced Thermal Conductivity and Performance
,”
Journal of Colloid and Interface Science
343
, no. 
1
(March
2010
):
246
255
, https://doi.org/10.1016/j.jcis.2009.11.036
108.
Shafigh
P.
,
Asadi
I.
, and
Mahyuddin
N. B.
, “
Concrete as a Thermal Mass Material for Building Applications–A Review
,”
Journal of Building Engineering
19
(September
2018
):
14
25
, https://doi.org/10.1016/j.jobe.2018.04.021
109.
Dincer
I.
, “
On Thermal Energy Storage Systems and Applications in Buildings
,”
Energy and Buildings
34
, no. 
4
(May
2002
):
377
388
, https://doi.org/10.1016/S0378-7788(01)00126-8
110.
Ma
P.
and
Wang
L.-S.
, “
Effective Heat Capacity of Interior Planar Thermal Mass (iPTM) Subject to Periodic Heating and Cooling
,”
Energy and Buildings
47
(April
2012
):
44
52
, https://doi.org/10.1016/j.enbuild.2011.11.020
111.
Grieu
S.
,
Faugeroux
O.
,
Traoré
A.
,
Claudet
B.
, and
Bodnar
J.-L.
, “
Artificial Intelligence Tools and Inverse Methods for Estimating the Thermal Diffusivity of Building Materials
,”
Energy and Buildings
43
, nos.
2–3
(February–March
2011
):
543
554
, https://doi.org/10.1016/j.enbuild.2010.10.020
112.
Adl-Zarrabi
B.
,
Boström
L.
, and
Wickström
U.
, “
Using the TPS Method for Determining the Thermal Properties of Concrete and Wood at Elevated Temperature
,”
Fire and Materials
30
, no. 
5
(September/October
2006
):
359
369
, https://doi.org/10.1002/fam.915
113.
Flynn
D. R.
,
Response of High Performance Concrete to Fire Condition, Review of Thermal Property, Data and Measurement Technique, NIST Report GCR 99-767
(
Gaithersburg, MD
:
National Institute of Standards and Technology
,
1999
).
114.
Nomura
T.
,
Okinaka
N.
, and
Akiyama
T.
, “
Impregnation of Porous Material with Phase Change Material for Thermal Energy Storage
,”
Materials Chemistry and Physics
115
, nos.
2–3
(June
2009
):
846
850
, https://doi.org/10.1016/j.matchemphys.2009.02.045
115.
Fu
X.
and
Chung
D. D. L.
, “
Effects of Silica Fume, Latex, Methylcellulose, and Carbon Fibers on the Thermal Conductivity and Specific Heat of Cement Paste
,”
Cement and Concrete Research
27
, no. 
12
(December
1997
):
1799
1804
, https://doi.org/10.1016/S0008-8846(97)00174-9
116.
Asadi
I.
,
Shafigh
P.
,
Abu Hassan
Z. F. B.
, and
Mahyuddin
N. B.
, “
Thermal Conductivity of Concrete–A Review
,”
Journal of Building Engineering
20
(November
2018
):
81
93
, https://doi.org/10.1016/j.jobe.2018.07.002
This content is only available via PDF.
You do not currently have access to this content.