Abstract

Additive manufacturing (AM), or 3-D printing, encompasses a range of technologies that “print” material layer by layer to create the final part. Though there is significant interest in the AM of concrete in the construction sector, opportunities for the AM of steel still need to be explored. This review focuses on the AM of low-alloy steels, stainless steels, duplex stainless steels (DSSs), precipitation-hardened (PH) stainless steels, and tool steels, highlighting the challenges and opportunities of employing AM technology for construction applications. Fusion-based AM technologies, such as wire arc additive manufacturing (WAAM), laser powder bed fusion (LPBF), and laser-directed energy deposition (LDED), are the core technologies that have been tested in the industry so far. WAAM has seen the most exploration for construction applications because of its higher deposition rate, larger build volume, and lower cost than other AM technologies. The mechanical performance of low-alloy steel, stainless steel, and tool steel shows increased tensile strengths after AM processing compared with wrought counterparts. Although AM is not economical for geometrically simple metal components or geometries, there is potential for AM to fabricate unique structural connections or joints, optimized load-bearing columns, and even entire bridges, as highlighted in this paper. AM’s digital nature (i.e., using computer-aided design (CAD) to create G-code paths for printing) can increase structural efficiency if coupled with topology optimization methods and high-strength alloys. Currently, however, general applications of AM in the industry are limited because of barriers with structural codes and standards not incorporating AM parts and AM technology barriers (i.e., limited build volumes).

References

1.
Renz
A.
,
Solas Zafra
M.
,
de Almeida
P. R.
,
Bühler
M.
,
Gerbert
P.
,
Castagnino
S.
, and
Rothballer
C.
,
Shaping the Future of Construction: A Breakthrough in Mindset and Technology
(
Geneva, Switzerland
:
World Economic Forum
,
2016
).
2.
Boake
T. M.
, “
From Repetition to Chaos: Complex Fabrications in Contemporary Steel Structures
,” in
Structures and Architecture: Bridging the Gap and Crossing Borders
, 1st ed. (
London
:
CRC Press
,
2019
),
855
862
.
3.
Block
P.
,
Knippers
J.
,
Mitra
N. J.
, and
Wang
W.
, eds.,
Advances in Architectural Geometry 2014
(
Cham, Switzerland
:
Springer International Publishing
,
2015
).
4.
Gorsse
S.
,
Hutchinson
C.
,
Gouné
M.
, and
Banerjee
R.
, “
Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys
,”
Science and Technology of Advanced Materials
18
, no. 
1
(
2017
):
584
610
, https://doi.org/10.1080/14686996.2017.1361305
5.
Ghaffar
S. H.
,
Corker
J.
, and
Fan
M.
, “
Additive Manufacturing Technology and Its Implementation in Construction as an Eco-innovative Solution
,”
Automation in Construction
93
(
2018
):
1
11
, https://doi.org/10.1016/j.autcon.2018.05.005
6.
Herron
C.
,
Ivus
M.
, and
Kotak
A.
,
Just Press ‘Print’: Canada’s Additive Manufacturing Ecosystem
(
Ottawa, Canada
:
Information and Communications Technology Council [ICTC]
,
2021
).
7.
Ali
M. H.
,
Issayev
G.
,
Shehab
E.
, and
Sarfraz
S.
, “
A Critical Review of 3D Printing and Digital Manufacturing in Construction Engineering
,”
Rapid Prototyping Journal
28
, no. 
7
(June
2022
):
1312
1324
, https://doi.org/10.1108/RPJ-07-2021-0160
8.
Buchanan
C.
and
Gardner
L.
, “
Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges
,”
Engineering Structures
180
(
2019
):
332
348
, https://doi.org/10.1016/j.engstruct.2018.11.045
9.
Kanyilmaz
A.
,
Demir
A. G.
,
Chierici
M.
,
Berto
F.
,
Gardner
L.
,
Kandukuri
S. Y.
,
Kassabian
P.
, et al., “
Role of Metal 3D Printing to Increase Quality and Resource-Efficiency in the Construction Sector
,”
Additive Manufacturing
50
(
2022
): 102541, https://doi.org/10.1016/j.addma.2021.102541
10.
Bajaj
P.
,
Hariharan
A.
,
Kini
A.
,
Kürnsteiner
P.
,
Raabe
D.
, and
Jägle
E. A.
, “
Steels in Additive Manufacturing: A Review of Their Microstructure and Properties
,”
Materials Science and Engineering: A
772
(
2020
): 138633, https://doi.org/10.1016/j.msea.2019.138633
11.
Armstrong
M.
,
Mehrabi
H.
, and
Naveed
N.
, “
An Overview of Modern Metal Additive Manufacturing Technology
,”
Journal of Manufacturing Processes
84
(
2022
):
1001
1029
, https://doi.org/10.1016/j.jmapro.2022.10.060
12.
Węglowski
M. S.
,
Błacha
S.
,
Jachym
R.
,
Dworak
J.
, and
Rykała
J.
, “
Additive Manufacturing with Wire – Comparison of Processes
,”
AIP Conference Proceedings
2113
, no. 
1
(July
2019
): 150016, https://doi.org/10.1063/1.5112692
13.
Hoefer
K.
,
Haelsig
A.
, and
Mayr
P.
, “
Arc-Based Additive Manufacturing of Steel Components—Comparison of Wire- and Powder-Based Variants
,”
Welding in the World
62
, no. 
2
(March
2018
):
243
247
, https://doi.org/10.1007/s40194-017-0527-9
14.
Michel
F.
,
Lockett
H.
,
Ding
J.
,
Martina
F.
,
Marinelli
G.
, and
Williams
S.
, “
A Modular Path Planning Solution for Wire + Arc Additive Manufacturing
,”
Robotics and Computer-Integrated Manufacturing
60
(
2019
):
1
11
, https://doi.org/10.1016/j.rcim.2019.05.009
15.
Müller
J.
,
Grabowski
M.
,
Müller
C.
,
Hensel
J.
,
Unglaub
J.
,
Thiele
K.
,
Kloft
H.
, and
Dilger
K.
, “
Design and Parameter Identification of Wire and Arc Additively Manufactured (WAAM) Steel Bars for Use in Construction
,”
Metals
9
, no. 
7
(July
2019
): 725, https://doi.org/10.3390/met9070725
16.
Fang
Q.
,
Zhao
L.
,
Chen
C.-X.
,
Cao
Y.
,
Song
L.
,
Peng
Y.
, and
Yin
F.-X.
, “
800 MPa Class HSLA Steel Block Part Fabricated by WAAM for Building Applications: Tensile Properties at Ambient and Elevated (600°C) Temperature
,”
Advances in Materials Science and Engineering
2022
, no. 
1
(
2022
): 3014060, https://doi.org/10.1155/2022/3014060
17.
Liu
J.
,
Xu
Y.
,
Ge
Y.
,
Hou
Z.
, and
Chen
S.
, “
Wire and Arc Additive Manufacturing of Metal Components: A Review of Recent Research Developments
,”
The International Journal of Advanced Manufacturing Technology
111
, nos. 
1–2
(November
2020
):
149
198
, https://doi.org/10.1007/s00170-020-05966-8
18.
Ran
X.
,
Liu
D.
,
Li
A.
,
Wang
H.
,
Tang
H.
, and
Cheng
X.
, “
Microstructure Characterization and Mechanical Behavior of Laser Additive Manufactured Ultrahigh-Strength Aermet100 Steel
,”
Materials Science and Engineering: A
663
(
2016
):
69
77
, https://doi.org/10.1016/j.msea.2016.03.051
19.
Shaikh
M. O.
,
Chen
C.-C.
,
Chiang
H.-C.
,
Chen
J.-R.
,
Chou
Y.-C.
,
Kuo
T.-Y.
,
Ameyama
K.
, and
Chuang
C.-H.
, “
Additive Manufacturing Using Fine Wire-Based Laser Metal Deposition
,”
Rapid Prototyping Journal
26
, no. 
3
(April
2020
):
473
483
, https://doi.org/10.1108/RPJ-04-2019-0110
20.
Sing
S. L.
,
Tey
C. F.
,
Tan
J. H. K.
,
Huang
S.
, and
Yeong
W. Y.
, “
3D Printing of Metals in Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing
,” in
Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing
, 2nd ed. (Sawston, UK:
Woodhead Publishing
,
2020
),
17
40
, https://doi.org/10.1016/B978-0-08-102663-2.00002-2
21.
Herzog
D.
,
Seyda
V.
,
Wycisk
E.
, and
Emmelmann
C.
, “
Additive Manufacturing of Metals
,”
Acta Materialia
117
(
2016
):
371
392
, https://doi.org/10.1016/j.actamat.2016.07.019
22.
Fayazfar
H.
,
Salarian
M.
,
Rogalsky
A.
,
Sarker
D.
,
Russo
P.
,
Paserin
V.
, and
Toyserkani
E.
, “
A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties
,”
Materials & Design
144
(
2018
):
98
128
, https://doi.org/10.1016/j.matdes.2018.02.018
23.
Saewe
J.
,
Carstensen
N.
,
Kürnsteiner
P.
,
Jägle
E. A.
, and
Schleifenbaum
J. H.
, “
Influence of Increased Carbon Content on the Processability of High-Speed Steel HS6-5-3-8 by Laser Powder Bed Fusion
,”
Additive Manufacturing
46
(
2021
): 102125, https://doi.org/10.1016/j.addma.2021.102125
24.
Badoo
N. R.
,
Design Manual for Structural Stainless Steel
, 4th ed. (Berkshire, UK:
Steel Construction Institute
,
2017
).
25.
Nethercot
D. A.
and
Gardner
L.
, “
Structural Stainless Steel Design: A New Approach
,”
The Structural Engineer
82
, no. 
21
(November
2004
):
28
29
.
26.
Canadian Institute of Steel Construction
Handbook of Steel Construction
(
Markham, Canada
:
Canadian Institute of Steel Construction
,
2017
).
27.
Sabelli
R.
and
López
W.
, “
Design of Buckling-Restrained Braced Frames
,” in
Modern Steel Construction
(Chicago, IL: American Institute of Steel Construction,
2004
),
1
4
.
28.
Tremblay
R.
,
Degrange
G.
, and
Blouin
J.
, “
Seismic Rehabilitation of a Four-Storey Building with a Stiffened Bracing System
” (paper presentation,
Eighth Canadian Conference on Earthquake Engineering
, Canada,
1999
).
29.
Seismic Provisions for Structural Steel Buildings Supersedes the Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16
(
Chicago, IL
:
American Institute of Steel Construction
,
2016
).
30.
Fang
C.
,
Wang
W.
,
Qiu
C.
,
Hu
S.
,
MacRae
G. A.
, and
Eatherton
M. R.
, “
Seismic Resilient Steel Structures: A Review of Research, Practice, Challenges and Opportunities
,”
Journal of Constructional Steel Research
191
(
2022
): 107172, https://doi.org/10.1016/j.jcsr.2022.107172
31.
Callister
W. D.
and
Rethwisch
D. G.
,
Materials Science and Engineering: An Introduction
(
Hoboken, NJ
:
John Wiley & Sons
,
2010
).
32.
Paul
A. R.
,
Mukherjee
M.
,
Raja
M.
,
Kundu
S.
, and
Chatterjee
A.
, “
Development of Near Homogeneous Properties in Wire Arc Additive Manufacturing Process for Near-Net Shaped Structural Component of Low-Carbon Steel
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
236
, no. 
7
(April
2022
):
3497
3511
, https://doi.org/10.1177/09544062211045489
33.
Rafieazad
M.
,
Ghaffari
M.
,
Vahedi Nemani
A.
, and
Nasiri
A.
, “
Microstructural Evolution and Mechanical Properties of a Low-Carbon Low-Alloy Steel Produced by Wire Arc Additive Manufacturing
,”
The International Journal of Advanced Manufacturing Technology
105
, nos. 
5–6
(December
2019
):
2121
2134
, https://doi.org/10.1007/s00170-019-04393-8
34.
Ermakova
A.
,
Mehmanparast
A.
,
Ganguly
S.
,
Razavi
J.
, and
Berto
F.
, “
Investigation of Mechanical and Fracture Properties of Wire and Arc Additively Manufactured Low Carbon Steel Components
,”
Theoretical and Applied Fracture Mechanics
109
(
2020
): 102685, https://doi.org/10.1016/j.tafmec.2020.102685
35.
Kyvelou
P.
,
Slack
H.
,
Daskalaki Mountanou
D.
,
Wadee
M. A.
,
Britton
T. B.
,
Buchanan
C.
, and
Gardner
L.
, “
Mechanical and Microstructural Testing of Wire and Arc Additively Manufactured Sheet Material
,”
Materials & Design
192
(
2020
): 108675, https://doi.org/10.1016/j.matdes.2020.108675
36.
Xia
Z.
,
Chen
L.
,
Huang
S.
,
Xu
J.
,
Wang
L.
, and
Zhang
S.
, “
Effect of Solid and Annular Laser Heat Sources on Thermal Cycle and Solid Phase Transformation in Rail Steel Manufactured by Laser Directed Energy Deposition
,”
Journal of Laser Applications
33
, no. 
1
(February
2021
): 012049, https://doi.org/10.2351/7.0000253
37.
Bobel
A.
,
Hector
L. G.
 Jr.
,
Chelladurai
I.
,
Sachdev
A. K.
,
Brown
T.
,
Poling
W. A.
,
Kubic
R.
, et al., “
In Situ Synchrotron X-ray Imaging of 4140 Steel Laser Powder Bed Fusion
,”
Materialia
6
(
2019
): 100306, https://doi.org/10.1016/j.mtla.2019.100306
38.
Ryder
M. A.
,
Montgomery
C. J.
,
Brand
M. J.
,
Carpenter
J. S.
,
Jones
P. E.
,
Spangenberger
A. G.
, and
Lados
D. A.
, “
Melt Pool and Heat Treatment Optimization for the Fabrication of High-Strength and High-Toughness Additively Manufactured 4340 Steel
,”
Journal of Materials Engineering and Performance
30
, no. 
7
(July
2021
):
5426
5440
, https://doi.org/10.1007/s11665-021-05836-8
39.
Hearn
W.
,
Harlin
P.
, and
Hryha
E.
, “
Development of Powder Bed Fusion–Laser Beam Process for AISI 4140, 4340 and 8620 Low-Alloy Steel
,”
Powder Metallurgy
66
, no. 
2
(April
2023
):
94
106
, https://doi.org/10.1080/00325899.2022.2134083
40.
Wenz
T.
,
Kirchner
A.
,
Klöden
B.
,
Weißgärber
T.
, and
Jurisch
M.
, “
Processing of High-Carbon Steel by Selective Electron Beam Melting
,”
Steel Research International
91
, no. 
5
(May
2020
): 1900479, https://doi.org/10.1002/srin.201900479
41.
Taha
M. A.
,
Yousef
A. F.
,
Gany
K. A.
, and
Sabour
H. A.
, “
On Selective Laser Melting of Ultra High Carbon Steel: Effect of Scan Speed and Post Heat Treatment
,”
Materials Science & Engineering Technology
43
, no. 
11
(November
2012
):
913
923
, https://doi.org/10.1002/mawe.201200030
42.
Kunz
J.
,
Saewe
J.
,
Herzog
S.
,
Kaletsch
A.
,
Schleifenbaum
J. H.
, and
Broeckmann
C.
, “
Mechanical Properties of High-Speed Steel AISI M50 Produced by Laser Powder Bed Fusion
,”
Steel Research International
91
, no. 
5
(May
2020
): 1900562, https://doi.org/10.1002/srin.201900562
43.
Kannan
A. R.
,
Kumar
S. M.
,
Pramod
R.
,
Shanmugam
N. S.
,
Vishnukumar
M.
, and
Naveenkumar
S.
, “
Microstructural Characterization and Mechanical Integrity of Stainless Steel 316L Clad Layers Deposited via Wire Arc Additive Manufacturing for Nuclear Applications
,”
Materials Science & Engineering Technology
52
, no. 
6
(June
2021
):
617
623
, https://doi.org/10.1002/mawe.202000242
44.
Huang
G.
,
Wei
K.
,
Deng
J.
,
Liu
M.
, and
Zeng
X.
, “
High-Power Laser Powder Bed Fusion of 316L Stainless Steel: Defects, Microstructure, and Mechanical Properties
,”
Journal of Manufacturing Processes
83
(
2022
):
235
245
, https://doi.org/10.1016/j.jmapro.2022.08.066
45.
Zheng
B.
,
Haley
J. C.
,
Yang
N.
,
Yee
J.
,
Terrassa
K. W.
,
Zhou
Y.
,
Lavernia
E. J.
, and
Schoenung
J. M.
, “
On the Evolution of Microstructure and Defect Control in 316L SS Components Fabricated via Directed Energy Deposition
,”
Materials Science and Engineering: A
764
(
2019
): 138243, https://doi.org/10.1016/j.msea.2019.138243
46.
Ascari
A.
,
Lutey
A. H. A.
,
Liverani
E.
, and
Fortunato
A.
, “
Laser Directed Energy Deposition of Bulk 316L Stainless Steel
,”
Lasers in Manufacturing and Materials Processing
7
, no. 
4
(December
2020
):
426
448
, https://doi.org/10.1007/s40516-020-00128-w
47.
Das
T.
,
Roy
H.
,
Lohar
A. K.
, and
Samanta
S. K.
,
“Mechanical and Microstructural Properties of Laser Direct Energy Deposited 15–5 PH and SS 316L Stainless Steel
,”
Materials Today: Proceedings
66
, Part 9 (
2022
):
3809
3813
, https://doi.org/10.1016/j.matpr.2022.06.249
48.
ASM Aerospace Specification Metals Inc. “
ASM Material Data Sheet: AISI Type 316L Stainless Steel, Annealed Bar
,”
ASM Aerospace Specification Metals
,
2023
, https://web.archive.org/web/20240613202043/https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq316q
49.
Wang
Z.
,
Palmer
T. A.
, and
Beese
A. M.
, “
Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing
,”
Acta Materialia
110
(
2016
):
226
235
, https://doi.org/10.1016/j.actamat.2016.03.019
50.
Guan
K.
,
Wang
Z.
,
Gao
M.
,
Li
X.
, and
Zeng
X.
, “
Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel
,”
Materials & Design
50
(
2013
):
581
586
, https://doi.org/10.1016/j.matdes.2013.03.056
51.
Laghi
V.
,
Palermo
M.
,
Gasparini
G.
, and
Trombetti
T.
, “
Computational Design and Manufacturing of a Half-Scaled 3D-Printed Stainless Steel Diagrid Column
,”
Additive Manufacturing
36
(
2020
): 101505, https://doi.org/10.1016/j.addma.2020.101505
52.
Haghdadi
N.
,
Ledermueller
C.
,
Chen
H.
,
Chen
Z.
,
Liu
Q.
,
Li
X.
,
Rohrer
G.
,
Liao
X.
,
Ringer
S.
, and
Primig
S.
, “
Evolution of Microstructure and Mechanical Properties in 2205 Duplex Stainless Steels during Additive Manufacturing and Heat Treatment
,”
Materials Science and Engineering: A
835
(
2022
): 142695, https://doi.org/10.1016/j.msea.2022.142695
53.
Nilsson
J. O.
, “
Super Duplex Stainless Steels
,”
Materials Science and Technology
8
, no. 
8
(August
1992
):
685
700
, https://doi.org/10.1179/mst.1992.8.8.685
54.
Maier
A.
,
Munk
A.
,
Kühl
A.
,
Rühr
M.
,
Hentschel
O.
,
Kaufmann
F.
,
Schrauder
J.
,
Roth
S.
, and
Schmidt
M.
, “
Influence of Process Parameters on Microstructural and Mechanical Properties of Duplex Stainless Steel 2205 (1.4462) Processed by DED-LB\M
,”
Procedia CIRP
111
(
2022
):
241
246
, https://doi.org/10.1016/j.procir.2022.08.058
55.
Qi
K.
,
Li
R.
,
Hu
Z.
,
Bi
X.
,
Li
T.
,
Yue
H.
, and
Zhang
B.
, “
Forming Appearance Analysis of 2205 Duplex Stainless Steel Fabricated by Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) Process
,”
Journal of Materials Engineering and Performance
31
, no. 
6
(June
2022
):
4631
4641
, https://doi.org/10.1007/s11665-022-06587-w
56.
Salvetr
P.
,
Školáková
A.
,
Melzer
D.
,
Brázda
M.
,
Duchoň
J.
,
Drahokoupil
J.
,
Svora
P.
,
Msallamová
Š.
, and
Novák
P.
, “
Characterization of Super Duplex Stainless Steel SAF2507 Deposited by Directed Energy Deposition
,”
Materials Science and Engineering: A
857
(
2022
): 144084, https://doi.org/10.1016/j.msea.2022.144084
57.
Muslim
T.
,
Karagoz
T.
,
Kurama
S.
,
Sezer
P.
,
Yazici
O. F.
, and
Ozkok
R.
, “
Laser Metal Deposition of 17–4 PH Stainless Steel: Geometrical, Microstructural, and Mechanical Properties Investigation for Structural Applications
,”
CIRP Journal of Manufacturing Science and Technology
41
(
2023
):
69
79
, https://doi.org/10.1016/j.cirpj.2022.12.010
58.
Caballero
A.
,
Ding
J.
,
Ganguly
S.
, and
Williams
S.
, “
Wire + Arc Additive Manufacture of 17-4 PH Stainless Steel: Effect of Different Processing Conditions on Microstructure, Hardness, and Tensile Strength
,”
Journal of Materials Processing Technology
268
(
2019
):
54
62
, https://doi.org/10.1016/j.jmatprotec.2019.01.007
59.
Kultz Unti
L. F.
,
Aota
L. S.
,
Jardini
A. L.
,
Tschiptschin
A. P.
,
Sandim
H. R. Z.
,
Jägle
E. A.
, and
Zilnyk
K. D.
, “
Microstructural Characterization of 15-5PH Stainless Steel Processed by Laser Powder-Bed Fusion
,”
Materials Characterization
181
(
2021
): 111485, https://doi.org/10.1016/j.matchar.2021.111485
60.
Kartikeya Sarma
I.
,
Selvraj
N.
, and
Kumar
A.
, “
A Review on Microstructure and Mechanical Properties of L-PBF 17-4PH and 15-5PH SS
,” in
Recent Advances in Manufacturing Processes and Systems
(
Singapore
:
Springer
,
2022
),
37
53
, https://doi.org/10.1007/978-981-16-7787-8_4
61.
Gu
W.
,
Campbell
J.
,
Tang
Y.
,
Safaie
H.
,
Johnston
R.
,
Gu
Y.
,
Pleydell-Pearce
C.
,
Burley
M.
,
Dean
J.
, and
Clyne
T. W.
, “
Indentation Plastometry of Welds
,”
Advanced Engineering Materials
24
, no. 
9
(September
2022
): 2101645, https://doi.org/10.1002/adem.202101645
62.
Ghaffari
M.
,
Vahedi Nemani
A.
, and
Nasiri
A.
, “
Microstructure and Mechanical Behavior of PH 13–8Mo Martensitic Stainless Steel Fabricated by Wire Arc Additive Manufacturing
,”
Additive Manufacturing
49
(
2022
): 102374, https://doi.org/10.1016/j.addma.2021.102374
63.
Benoit
M. J.
,
Tabaie
S.
,
Waqar
T.
,
Ganton
T.
,
Amirkhiz
B. S.
,
Hadadzadeh
A.
, and
Nasiri
A.
, “
Effects of Additive Manufacturing Processes and Isothermal Aging on the Microstructure and Properties of 13-8 Mo Precipitation Hardening Martensitic Stainless Steel
,”
Additive Manufacturing
72
(
2023
): 103615, https://doi.org/10.1016/j.addma.2023.103615
64.
Benoit
M. J.
,
Ganton
T.
,
Kaushik
H. C.
,
Shakil
S. I.
,
Zaker
N.
,
Amirkhiz
B. S.
,
Nasiri
A.
,
Haghshenas
M.
, and
Hadadzadeh
A.
, “
Integration of Additive Manufacturing and Thermomechanical Processing toward a Hybrid Production Route for PH13-8Mo Stainless Steel
,”
Materials Today Communications
38
(
2024
): 108159, https://doi.org/10.1016/j.mtcomm.2024.108159
65.
Mazur
M.
,
Leary
M.
,
McMillan
M.
,
Elambasseril
J.
, and
Brandt
M.
, “
SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices
,”
Rapid Prototyping Journal
22
, no. 
3
(
2016
):
504
518
, https://doi.org/10.1108/RPJ-06-2014-0075
66.
Ning
A.
,
Mao
W.
,
Chen
X.
,
Guo
H.
, and
Guo
J.
, “
Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering
,”
Metals
7
, no. 
3
(March
2017
): 70, https://doi.org/10.3390/met7030070
67.
Chadha
K.
,
Tian
Y.
,
Nyamuchiwa
K.
,
Spray
J.
, and
Aranas
C.
 Jr.
, “
Austenite Transformation during Deformation of Additively Manufactured H13 Tool Steel
,”
Materials Today Communications
33
(
2022
): 104332, https://doi.org/10.1016/j.mtcomm.2022.104332
68.
Park
J. S.
,
Park
J. H.
,
Lee
M.-G.
,
Sung
J. H.
,
Cha
K. J.
, and
Kim
D. H.
, “
Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process
,”
Metallurgical and Materials Transactions A
47
, no. 
5
(May
2016
):
2529
2535
, https://doi.org/10.1007/s11661-016-3427-5
69.
Hackenhaar
W.
,
Mazzaferro
J. A. E.
,
Mazzaferro
C. C. P.
,
Grossi
N.
, and
Campatelli
G.
, “
Effects of Different WAAM Current Deposition Modes on the Mechanical Properties of AISI H13 Tool Steel
,”
Welding in the World
66
, no. 
11
(November
2022
):
2259
2269
, https://doi.org/10.1007/s40194-022-01342-0
70.
Macek
W.
,
Martins
R. F.
,
Branco
R.
,
Marciniak
Z.
,
Szala
M.
, and
Wroński
S.
, “
Fatigue Fracture Morphology of AISI H13 Steel Obtained by Additive Manufacturing
,”
International Journal of Fracture
235
, no. 
1
(May
2022
):
79
98
, https://doi.org/10.1007/s10704-022-00615-5
71.
Xia
Z.
,
Xu
J.
,
Shi
J.
,
Shi
T.
,
Sun
C.
, and
Qiu
D.
, “
Microstructure Evolution and Mechanical Properties of Reduced Activation Steel Manufactured through Laser Directed Energy Deposition
,”
Additive Manufacturing
33
(
2020
): 101114, https://doi.org/10.1016/j.addma.2020.101114
72.
Barr
C.
,
Rashid
R. A. R.
,
Da Sun
S.
,
Easton
M.
,
Palanisamy
S.
,
Orchowski
N.
,
Matthews
N.
,
Walker
K.
, and
Brandt
M.
, “
Role of Deposition Strategy and Fill Depth on the Tensile and Fatigue Performance of 300M Repaired through Laser Directed Energy Deposition
,”
International Journal of Fatigue
146
(
2021
): 106135, https://doi.org/10.1016/j.ijfatigue.2020.106135
73.
Rońda
N.
,
Grzelak
K.
,
Polański
M.
, and
Dworecka-Wójcik
J.
, “
The Influence of Layer Thickness on the Microstructure and Mechanical Properties of M300 Maraging Steel Additively Manufactured by LENS® Technology
,”
Materials
15
, no. 
2
(January
2022
): 603, https://doi.org/10.3390/MA15020603
74.
Kučerová
L.
,
Burdová
K.
,
Jeníček
Š.
, and
Chena
I.
, “
Effect of Solution Annealing and Precipitation Hardening at 250°C–550°C on Microstructure and Mechanical Properties of Additively Manufactured 1.2709 Maraging Steel
,”
Materials Science and Engineering: A
814
(
2021
): 141195, https://doi.org/10.1016/j.msea.2021.141195
75.
Liu
F.
,
Zhang
W.
,
Lin
X.
,
Huang
C.
,
Wang
Z.
,
Liu
F.
,
Huang
W.
,
Wang
P.
, and
Li
X.
, “
Achieving Superior Ductility for Laser Directed Energy Deposition 300 M Steel through Isothermal Bainitic Transformation
,”
Journal of Manufacturing Processes
60
(
2020
):
426
434
, https://doi.org/10.1016/j.jmapro.2020.10.077
76.
American Institute of Steel Construction “
Design for Fatigue
,” in
Steel Bridge Design Handbook
(
Chicago, IL
:
American Institute of Steel Construction
,
2022
).
77.
Rajesh Kannan
A.
,
Siva Shanmugam
N.
,
Rajkumar
V.
, and
Vishnukumar
M.
, “
Insight into the Microstructural Features and Corrosion Properties of Wire Arc Additive Manufactured Super Duplex Stainless Steel (ER2594)
,”
Materials Letters
270
(
2020
): 127680, https://doi.org/10.1016/j.matlet.2020.127680
78.
Hemmasian Ettefagh
A.
,
Guo
S.
, and
Raush
J.
, “
Corrosion Performance of Additively Manufactured Stainless Steel Parts: A Review
,”
Additive Manufacturing
37
(
2021
): 101689, https://doi.org/10.1016/j.addma.2020.101689
79.
Ziętala
M.
,
Durejko
T.
,
Polański
M.
,
Kunce
I.
,
Płociński
T.
,
Zieliński
W.
,
Łazińska
M.
,
Stępniowski
W.
,
Czujko
T.
,
Kurzydłowski
K. J.
, et al., “
The Microstructure, Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated Using Laser Engineered Net Shaping
,”
Materials Science and Engineering: A
677
(
2016
):
1
10
, https://doi.org/10.1016/j.msea.2016.09.028
80.
Shamsaei
N.
,
Yadollahi
A.
,
Bian
L.
, and
Thompson
S. M.
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part II: Mechanical Behavior, Process Parameter Optimization and Control
,”
Additive Manufacturing
8
(
2015
):
12
35
, https://doi.org/10.1016/j.addma.2015.07.002
81.
Ermakova
A.
,
Razavi
J.
,
Berto
F.
, and
Mehmanparast
A.
, “
Uniaxial and Multiaxial Fatigue Behaviour of Wire Arc Additively Manufactured ER70S-6 Low Carbon Steel Components
,”
International Journal of Fatigue
166
(
2023
): 107283, https://doi.org/10.1016/j.ijfatigue.2022.107283
82.
Li
Y.
,
Yuan
Y.
,
Wang
D.
,
Fu
S.
,
Song
D.
,
Vedani
M.
, and
Chen
X.
, “
Low Cycle Fatigue Behavior of Wire Arc Additive Manufactured and Solution Annealed 308L Stainless Steel
,”
Additive Manufacturing
52
(
2022
): 102688, https://doi.org/10.1016/j.addma.2022.102688
83.
Ayan
Y.
and
Kahraman
N.
, “
Bending Fatigue Properties of Structural Steel Fabricated through Wire Arc Additive Manufacturing (WAAM)
,”
Engineering Science and Technology, an International Journal
35
(
2022
): 101247, https://doi.org/10.1016/j.jestch.2022.101247
84.
Hensel
J.
,
Müller
J.
,
Scharf-Wildenhain
R.
,
Uhlenberg
L.
, and
Hälsig
A.
, “
The Effects of Building Position on Surface and Fatigue of DED-Arc Steel Components
,”
Welding in the World
67
, no. 
4
(
2023
):
859
872
, https://doi.org/10.1007/s40194-022-01431-0
85.
Wu
B.
,
Pan
Z.
,
Ding
D.
,
Cuiuri
D.
,
Li
H.
,
Xu
J.
, and
Norrish
J.
, “
A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement
,”
Journal of Manufacturing Processes
35
(
2018
):
127
139
, https://doi.org/10.1016/j.jmapro.2018.08.001
86.
Kok
Y.
,
Tan
X. P.
,
Wang
P.
,
Nai
M. L. S.
,
Loh
N. H.
,
Liu
E.
, and
Tor
S. B.
, “
Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review
,”
Materials & Design
139
(
2018
):
565
586
, https://doi.org/10.1016/j.matdes.2017.11.021
87.
Gardner
L.
,
Kyvelou
P.
,
Herbert
G.
, and
Buchanan
C.
, “
Testing and Initial Verification of the World’s First Metal 3D Printed Bridge
,”
Journal of Constructional Steel Research
172
(
2020
): 106233, https://doi.org/10.1016/j.jcsr.2020.106233
88.
Wynne
Z.
,
Buchanan
C.
,
Kyvelou
P.
,
Gardner
L.
,
Kromanis
R.
,
Stratford
T.
, and
Reynolds
T. P. S.
, “
Dynamic Testing and Analysis of the World’s First Metal 3D Printed Bridge
,”
Case Studies in Construction Materials
17
(
2022
): e01541, https://doi.org/10.1016/j.cscm.2022.e01541
89.
Gardner
L.
,
Li
J.
,
Meng
X.
,
Huang
C.
, and
Kyvelou
P.
, “
Buckling Tests on I-Section Steel Columns Strengthened by Additive Manufacturing
,”
CE/Papers
6
, nos. 
3–4
(September
2023
):
720
725
, https://doi.org/10.1002/cepa.2462
90.
Meng
X.
,
Zhi
J.
,
Xu
F.
, and
Gardner
L.
, “
Novel Hybrid Sleeve Connections between 3D Printed and Conventional Tubular Steel Elements
,”
Engineering Structures
302
(
2024
): 117269, https://doi.org/10.1016/j.engstruct.2023.117269
91.
Wang
L.
,
Du
W.
,
He
P.
, and
Yang
M.
, “
Topology Optimization and 3D Printing of Three-Branch Joints in Treelike Structures
,”
Journal of Structural Engineering
146
, no. 
1
(January
2020
): 04019167, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002454
92.
Kassabian
P.
,
Cranston
G.
,
Lee
J.
,
Helmick
R.
, and
Rodrigo
S.
, “
3D Metal Printing As Structure for Architectural and Sculptural Projects
,” in
Fabricate 2017
(
London
:
UCL Press
,
2017
),
196
201
, https://doi.org/10.2307/j.ctt1n7qkg7.31
93.
Galjaard
S.
,
Hofman
S.
,
Perry
N.
, and
Ren
S.
, “
Optimizing Structural Building Elements in Metal by Using Additive Manufacturing
” (paper presentation,
Proceedings of the International Association for Shell and Spatial Structures (IASS)
,
Amsterdam
,
the Netherlands
, August 17–20,
2015
).
94.
Li
Z.
and
Tsavdaridis
K. D.
, “
Limited-Damage 3D-Printed Interlocking Connection for Timber Volumetric Structures: Experimental Validation and Computational Modelling
,”
Journal of Building Engineering
63
, Part A (January
2023
): 105373, https://doi.org/10.1016/j.jobe.2022.105373
95.
Subramanyam
B.
,
Vineeta
T. V.
,
Garre
P.
,
Nikhil Bharadwaj
V. V. S.
, and
Shiva Shashank
P.
, “
Comparative Analysis of Additive Manufacturing over Conventional Manufacturing,”
IOP Conference Series: Materials Science Engineering
455
(
2018
): 012102, https://doi.org/10.1088/1757-899X/455/1/012102
96.
Perini
M.
,
Bosetti
P.
, and
Balc
N.
, “
Additive Manufacturing for Repairing: From Damage Identification and Modeling to DLD
,”
Rapid Prototyping Journal
26
, no. 
5
(May
2020
):
929
940
, https://doi.org/10.1108/RPJ-03-2019-0090
97.
Prashar
G.
,
Vasudev
H.
, and
Bhuddhi
D.
, “
Additive Manufacturing: Expanding 3D Printing Horizon in Industry 4.0
,”
International Journal on Interactive Design and Manufacturing (IJIDeM)
17
, no. 
5
(October
2023
):
2221
2235
, https://doi.org/10.1007/s12008-022-00956-4
98.
Agnusdei
L.
and
Del Prete
A.
, “
Additive Manufacturing for Sustainability: A Systematic Literature Review
,”
Sustainable Futures
4
(
2022
): 100098, https://doi.org/10.1016/j.sftr.2022.100098
99.
Van Sice
C.
and
Faludi
J.
, “
Comparing Environmental Impacts of Metal Additive Manufacturing to Conventional Manufacturing
,”
Proceedings of the Design Society
1
(
2021
):
671
680
, https://doi.org/10.1017/pds.2021.67
100.
Mani
M.
,
Lyons
K. W.
, and
Gupta
S. K.
, “
Sustainability Characterization for Additive Manufacturing
,”
Journal of Research of the National Institute of Standards and Technology
119
(
2014
):
419
428
, https://doi.org/10.6028/jres.119.016
101.
Liao
J.
and
Cooper
D. R.
, “
The Environmental Impacts of Metal Powder Bed Additive Manufacturing
,”
Journal of Manufacturing Science and Engineering
143
, no. 
3
(March
2021
): 030801, https://doi.org/10.1115/1.4048435
102.
Gibson
I.
,
Rosen
D.
, and
Stucker
B.
, “
Directed Energy Deposition Processes
,” in
Additive Manufacturing Technologies
(
New York
:
Springer
,
2015
),
245
268
, https://doi.org/10.1007/978-1-4939-2113-3_10
103.
Jafari
D.
,
Vaneker
T. H. J.
, and
Gibson
I.
, “
Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts
,”
Materials & Design
202
(
2021
): 109471, https://doi.org/10.1016/j.matdes.2021.109471
104.
Paul
C. P.
,
Jinoop
A. N.
,
Kumar
A.
, and
Bindra
K. S.
, “
Laser-Based Metal Additive Manufacturing: Technology, Global Scenario and Our Experiences
,”
Transactions of the Indian National Academy of Engineering
6
, no. 
4
(December
2021
):
895
908
, https://doi.org/10.1007/s41403-021-00228-9
105.
Michel
L.
,
Sanchez
A. M. A.
,
Silvestru
V. A.
,
Ariza
I.
,
Taras
A.
, and
Angst
U.
, “
Corrosion Behaviour of Point-by-Point Wire and Arc Additively Manufactured Steel Bars
,”
Materials and Corrosion
73
, no. 
7
(July
2022
):
996
1014
, https://doi.org/10.1002/maco.202112994
This content is only available via PDF.
You do not currently have access to this content.