Abstract

Conventional concrete is a dielectric whose properties change based on the constituents of the mixture. Consequently, it is not an effective electromagnetic shield since radio frequency (RF) waves can still propagate through it with relatively low attenuation. Recently, conductive concrete, which is a cement-based mix, was developed to achieve high electrical conductivity and high mechanical strength. Petroleum coke with different particle sizes, synthetic graphite, and steel fibers were used to improve the electrical properties of the concrete. In this paper, the effectiveness of conductive concrete as an electromagnetic shield is investigated. Steel fiber configuration and sample thickness were the parameters used in the evaluation. Frequencies between 0.3 to 11 GHz were considered in the investigation. The free space measurement method was used to measure the electromagnetic shielding effectiveness and the results showed that attenuation up to 50 dB could be achieved for the frequency range considered in the investigation.

References

1.
Giri
,
D.V.
and
Tesche
,
F.M.
, “
Modeling of Propagation Losses in Common Residential and Commercial Building Walls
,”
Interaction Note IN 624
,
Pro-Tech
,
Alamo, CA
,
2013
.
2.
Bantsis
,
G.
,
Mavridou
,
S.
,
Sikalidis
,
C.
,
Betsiou
,
M.
,
Oikonomou
,
N.
, and
Yioultsis
,
T.
, “
Comparison of Low Cost Shielding-Absorbing Cement Paste Building Materials in X-Band Frequency Range Using a Variety of Wastes
,”
Ceram. Int.
, Vol.
38
, No.
5
,
2012
, pp.
3683
3692
. https://doi.org/10.1016/j.ceramint.2012.01.010
3.
Hemming
,
L.H.
,
Architectural Electromagnetic Shielding Handbook: A Design and Specification Guide
,
IEEE Press
,
Piscataway, NJ
,
1992
.
4.
Gnecco
,
L.T.
,
The Design of Shielded Enclosures: Cost-Effective Methods to Prevent EMI
,
Newnes
,
Boston, MA
,
2000
.
5.
Tumidajski
,
P.J.
,
Xie
,
P.
,
Arnott
,
M.
, and
Beaudoin
,
J.J.
, “
Overlay Current in a Conductive Concrete Snow Melting System
,”
Cem. Concr. Res.
, Vol.
33
, No.
11
,
2003
, pp.
1807
1809
. https://doi.org/10.1016/S0008-8846(03)00198-4
6.
Xie
,
P.
and
Beaudoin
,
J.J.
, “
Electrically Conductive Concrete and its Application in Deicing
,”
ACI Special Publication No. 154
,
ACI
,
Farmington Hills, MI
,
1995
.
7.
Yehia
,
S.
and
Tuan
,
C.Y.
, “
Conductive Concrete Overlay for Bridge Deck Deicing
,”
ACI Mater. J.
, Vol.
96
,
1999
, pp.
382
390
.
8.
Yehia
,
S.
and
Tuan
,
C.Y.
, “
Thin Conductive Concrete Overlay for Bridge Deck Deicing and Anti-Icing
,”
J. Transp. Res. Board, Mater., Concr. Constr.
, Vol.
1698
,
2000
, pp.
45
53
. https://doi.org/10.3141/1698-07
9.
Pye
,
G.B.
,
Myers
,
R.E.
,
Arnott
,
M.R.
,
Beaudoin
,
J.J.
, and
Tumidajski
,
P.J.
, “
Conductive Concrete Composition
,” U.S. Patent No. 6,503,318 (
2003
).
10.
Tuan
,
C.Y.
,
Yehia
,
S.
,
Chen
,
B.
, and
Nguyen
,
L.
, “
Heated Bridge Deck System and Materials and Method for Constructing the Same
,” U.S. Patent No. 6,825,444 (
2004
).
11.
Yehia
,
S.
and
Tuan
,
C.Y.
, “
An Implementation of Using a Conductive Concrete Overlay for Bridge Deck Deicing at Roca, NE
,”
Proceedings of the 83rd Annual Meeting Transportation Research Board
, Jan 11–15,
2004
.
12.
Krause
,
A.
,
Nguyen
,
L.
,
Tuan
,
C.
,
Bonsell
,
J.
,
Chen
,
B.
,
Blasey
,
J.D.
,
Zemotel
,
J.P.
,
McNerney
,
H.
, and
Metzger
,
F.J.
, “
Conductive Concrete as an Electromagnetic Shield
,”
Proceedings of the Electromagnetic Compatibility (EMC), 2012 IEEE International Symposium
Aug. 6–10,
2012
, pp.
85
87
.
13.
Shetty
,
M.S.
,
Concrete Technology—Theory and Practice
,
S. Chand & Company
,
Ram Nager, New Delhi, India
,
2005
.
14.
Yehia
,
S.
,
Tuan
,
C.Y.
,
Ferdon
,
D.
, and
Chen
,
B.
, “
Conductive Concrete Overlay for Bridge Deck Deicing: Mix Design, Optimization, and Properties
,”
ACI Mater. J.
, Vol.
97
,
2000
, pp.
172
181
.
15.
Yehia
,
S.
and
Host
,
J.
, “
Conductive Concrete for Cathodic Protection of Bridge Decks
,”
ACI Mater. J.
, Vol.
107
, No.
6
,
2010
, pp.
577
585
.
16.
Chung
,
D.D. L.
, “
Electrical Conduction Behavior of Cement-Matrix Composites
,”
J. Mater. Perform.
, Vol.
11
, No.
2
,
2002
, pp.
194
204
. https://doi.org/10.1361/105994902770344268
17.
Thomassin
,
J.M.
,
Jérôme
,
C.
,
Pardoen
,
T.
,
Bailly
,
C.
,
Huynen
,
I.
, and
Detrembleur
,
C.
, “
Polymer/Carbon Based Composites as Electromagnetic Interference (EMI) Shielding Materials
,”
Mater. Sci. Eng.: R: Reports
, Vol.
74
, No.
7
,
2013
, pp.
211
232
. https://doi.org/10.1016/j.mser.2013.06.001
18.
Kaynak
,
A.
, “
Electromagnetic Shielding Effectiveness of Galvanostatically Synthesized Conducting Polypyrrole Films in the 300–2000 MHz Frequency Range
,”
Mater. Res. Bull.
, Vol.
31
, No.
7
,
1996
, pp.
845
860
. https://doi.org/10.1016/0025-5408(96)00038-4
19.
Al-Saleh
,
M.H.
and
Sundararaj
,
U.
, “
Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites
,”
Carbon
, Vol.
47
, No.
7
,
2009
, pp.
1738
1746
. https://doi.org/10.1016/j.carbon.2009.02.030
20.
Joo
,
J.
and
Epstein
,
A.J.
, “
Electromagnetic Radiation Shielding by Intrinsically Conducting Polymers
,”
Appl. Phys. Lett.
, Vol.
65
,
1994
, pp.
2278
2280
. https://doi.org/10.1063/1.112717
21.
Arjmand
,
M.
,
Apperley
,
T.
,
Okoniewski
,
M.
, and
Sundararaj
,
U.
, “
Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-Walled Carbon Nanotube/Polystyrene Composites
,”
Carbon
, Vol.
50
, No.
14
,
2012
, pp.
5126
5134
. https://doi.org/10.1016/j.carbon.2012.06.053
22.
Tantawy
,
H.R.
,
Aston
,
D.E.
,
Smith
,
J.R.
, and
Young
,
J.L.
, “
A Comparison of Electromagnetic Shielding with Polyaniline Nanopowders Produced in Solvent-Limited Conditions
,”
ACS Appl. Mater. Interf.
, Vol.
5
, No.
11
,
2013
, pp.
4648
4658
. https://doi.org/10.1021/am401695p
23.
Saini
,
P.
,
Choudhary
,
V.
,
Vijayan
,
N.
, and
Kotnala
,
R.K.
,
2012
, “
Improved Electromagnetic Interference Shielding Response of Poly (Aniline)-Coated Fabrics Containing Dielectric and Magnetic Nanoparticles
,”
J. Phys. Chem. C
, Vol.
116
, No.
24
, pp.
13403
13412
. https://doi.org/10.1021/jp302131w
24.
Yuping
,
D.
,
Shunhua
,
L.
, and
Hongtao
,
G.
, “
Investigation of Electrical Conductivity and Electromagnetic Shielding Effectiveness of Polyaniline Composite
,”
Sci. Technol. Adv. Mater.
, Vol.
6
, No.
5
,
2005
, pp.
513
518
. https://doi.org/10.1016/j.stam.2005.01.002
25.
Guan
,
H.
,
Liu
,
S.
,
Duan
,
Y.
, and
Cheng
,
J.
, “
Cement Based Electromagnetic Shielding and Absorbing Building Materials
,”
Cem. Concr. Res.
, Vol.
28
, No.
5
,
2006
, pp.
468
474
. https://doi.org/10.1016/j.cemconcomp.2005.12.004
26.
Wen
,
S.
and
Chung
,
D.D. L.
, “
Partial Replacement of Carbon Fiber by Carbon Black in Multifunctional Cement–Matrix Composites
,”
Carbon
, Vol.
45
,
2007
, pp.
505
513
. https://doi.org/10.1016/j.carbon.2006.10.024
27.
Huang
,
Y.
,
Li
,
N.
,
Ma
,
Y.
,
Du
,
F.
,
Li
,
F.
,
He
,
X.
,
Lin
,
X.
,
Gao
,
H.
, and
Chen
,
Y.
, “
The Influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic Interference Shielding Efficiency of its Epoxy Composites
,”
Carbon
, Vol.
45
, No.
8
,
2007
, pp.
1614
1621
. https://doi.org/10.1016/j.carbon.2007.04.016
28.
Li
,
N.
,
Huang
,
Y.
,
Du
,
F.
,
Xiaobo
,
Lin
,
X.
,
G.
H.
,
Ma
,
Y.
,
Li
,
F.
,
Chen
,
Y.
, and
Eklund
,
P.
, “
Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites
,”
Nano Lett.
, Vol.
6
, No.
6
,
2006
, pp.
1141
1145
. https://doi.org/10.1021/nl0602589
29.
Das
,
N.C.
,
Khastgir
,
D.
,
Chaki
,
T.K.
, and
Chakraborty
,
A.
, “
Electromagnetic Interference Shielding Effectiveness of Carbon Black and Carbon Fiber Filled EVA and NR Based Composites
,”
Compos.A
, Vol.
31
,
2000
, pp.
1069
1081
. https://doi.org/10.1016/S1359-835X(00)00064-6
30.
Bhattacharya
,
S.
,
Sachdev
,
V.K.
,
Chatterjee
,
R.
, and
Tandon
,
R.P.
, “
Decisive Properties of Graphite-Filled Cement Composites for Device Application
,”
Appl. Phys. A
, Vol.
92
, No.
2
,
2008
, pp.
417
420
. https://doi.org/10.1007/s00339-008-4544-9
31.
Mishra
,
M.
,
Singh
,
A.P.
, and
Dhawan
,
S.K.
, “
Expanded Graphite–Nanoferrite–Fly Ash Composites for Shielding of Electromagnetic Pollution
,”
J. Alloys Componds
, Vol.
557
,
2013
, pp.
244
251
. https://doi.org/10.1016/j.jallcom.2013.01.004
32.
Chandra
,
A.
,
Mathur
,
R.B.
, and
Dhawan
,
S.K.
,
2013
,
Multiwalled Carbon Nanotube/Cement Composites With Exceptional Electromagnetic Interference Shielding Properties
,”
Carbon
, Vol.
56
,
2013
, pp.
86
96
. https://doi.org/10.1016/j.carbon.2012.12.081
33.
Dai
,
Y.
,
Sun
,
M.
,
Liu
,
C.
, and
Li
,
Z.
, “
Electromagnetic Wave Absorbing Characteristics of Carbon Black Cement-Based Composites
,”
Cem. Concr. Compos.
, Vol.
32
, No.
7
,
2010
, pp.
508
513
. https://doi.org/10.1016/j.cemconcomp.2010.03.009
34.
Moglie
,
F.
,
Micheli
,
D.
,
Laurenzi
,
S.
,
Marchetti
,
M.
, and
Mariani Primiani
,
V.
, “
Electromagnetic Shielding Performance of Carbon Foams
,”
Carbon
, Vol.
50
, No.
5
,
2012
,
1972
1980
. https://doi.org/10.1016/j.carbon.2011.12.053
35.
Chung
,
D.D. L.
, “
Carbon Materials for Structural Self-Sensing, Electromagnetic Shielding and Thermal Interfacing
,”
Carbon
, Vol.
50
, No.
9
,
2012
, pp.
3342
3353
. https://doi.org/10.1016/j.carbon.2012.01.031
36.
Baeza
,
F.J.
,
Galao
,
O.
,
Zornoza
,
E.
, and
Garcés
,
P.
,
2013
, “
Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC) Structural Elements
,”
Materials
, Vol.
6
, No.
3
, pp.
841
855
. https://doi.org/10.3390/ma6030841
37.
Galao
,
O.
,
Baeza
,
F.J.
,
Zornoza
,
E.
, and
Garcés
,
P.
, “
Strain and Damage Sensing Properties on Multifunctional Cement Composites With CNF Admixture
,”
Cem. Concr. Compos.
, Vol.
46
,
2014
, pp.
90
98
. https://doi.org/10.1016/j.cemconcomp.2013.11.009
38.
Inam
,
F.
,
Bhat
,
B.R.
,
Vo
,
T.
, and
Daoush
,
W.M.
, “
Structural Health Monitoring Capabilities In Ceramic–Carbon Nanocomposites
,”
Ceram. Int.
, Vol.
40
, No.
2
,
2014
, pp.
3793
3798
. https://doi.org/10.1016/j.ceramint.2013.09.039
39.
Chung
,
D.D. L.
, “
Electromagnetic Interference Shielding Effectiveness of Carbon Materials
,”
Carbon
, Vol.
39
, No.
2
,
2001
, pp.
279
285
. https://doi.org/10.1016/S0008-6223(00)00184-6
40.
Fu
,
X.
and
Chung
,
D.D. L.
, “
Submicron-Diameter-Carbon-Filament Cement-Matrix Composites
,”
Carbon
, Vol.
36
, No.
4
,
1998
, pp.
459
462
. https://doi.org/10.1016/S0008-6223(98)90017-3
41.
He
,
Y.
,
Lu
,
L.
,
Jin
,
S.
, and
Hu
,
S.
, “
Conductive Aggregate Prepared Using Graphite and Clay and its Use in Conductive Mortar
,”
Constr. Build. Mater.
, Vol.
53
,
2014
, pp.
131
137
. https://doi.org/10.1016/j.conbuildmat.2013.11.085
42.
Chung
,
D.D. L.
, “
Review Electrical Applications of Carbon Materials
,”
J. Mater. Sci.
, Vol.
39
,
2004
, pp.
2645
2661
. https://doi.org/10.1023/B:JMSC.0000021439.18202.ea
43.
Shi
,
Z.-Q.
and
Chung
,
D.
, “
Concrete for Magnetic Shielding
,”
Cem. Concr. Res.
, Vol.
25
, No.
5
,
1995
, pp.
939
944
. https://doi.org/10.1016/0008-8846(95)00087-S
44.
Chung
,
D.L. L.
, “
Review Electromagnetic Interference Shielding Effectiveness of Carbon Materials
,”
Carbon
, Vol.
39
, No.
2
,
2001
, pp.
279
285
. https://doi.org/10.1016/S0008-6223(00)00184-6
45.
Guan
,
H.
,
Liu
,
S.
,
Duan
,
Y.
, and
Cheng
,
J.
, “
Cement Based Electromagnetic Shielding and Absorbing Building Materials
,”
Cem. Concr. Res.
, Vol.
28
, No.
5
,
2006
, pp.
468
474
. https://doi.org/10.1016/j.cemconcomp.2005.12.004
46.
Wen
,
S.
and
Chung
,
D.
, “
Electromagnetic Interference Shielding Reaching 70 db in Steel Fiber Cement
,”
Cem. Concr. Res.
, Vol.
34
, No.
2
,
2004
, pp.
329
332
. https://doi.org/10.1016/j.cemconres.2003.08.014
47.
Fu
,
X.
and
Chung
,
D.
, “
Radio-Wave-Reflecting Concrete for Lateral Guidance in Automatic Highways
,”
Cem. Concr. Res.
, Vol.
28
, No.
6
,
1998
, pp.
795
801
. https://doi.org/10.1016/S0008-8846(98)00057-X
48.
Chung
,
D.L. L.
, “
Electrically Conductive Cement-Based Materials
,”
Adv. Cem. Res.
, Vol.
16
, No.
4
,
2004
, pp.
167
176
. https://doi.org/10.1680/adcr.2004.16.4.167
49.
Cao
,
J.
and
Chung
,
D.
, “
Use of Fly Ash as an Admixture for Electromagnetic Interference Shielding
,”
Cem. Concr. Res.
, Vol.
34
, No.
10
,
2004
, pp.
1889
1892
. https://doi.org/10.1016/j.cemconres.2004.02.003
50.
Facure
,
A.
and
Silva
,
A.
, “
The Use of High-Density Concretes in Radiotherapy Treatment Room Design
,”
Appl. Rad. Isotop.
, Vol.
65
, No.
9
,
2007
, pp.
1023
1028
. https://doi.org/10.1016/j.apradiso.2007.04.006
51.
Feick
,
R.
,
Hristov
,
H.
, and
Grote
,
W.
, “
Attenuation Measurements for Double-Mesh Reinforced Concrete Walls at the 900 MHz Cellular Band
,”
Proceedings of the International Wireless Design Conference (WDC)
,
London, United Kingdom
, May
2002
, pp.
165
168
.
52.
El-Hosiny
,
F.
and
El-Faramawy
,
N.
, “
Shielding of Gamma Radiation by Hydrated Portland Cement Lead Pastes
,”
Rad. Meas.
, Vol.
32
, No.
2
,
2000
, pp.
93
99
. https://doi.org/10.1016/S1350-4487(99)00050-5
53.
McCormack
,
R.G.
, “
Method of Making Concrete Electrically Conductive for Electromagnetic Shielding Purposes
,” U.S. Patent No. 5,346,547 (
1994
).
54.
Glatkowski
,
P.
,
Mack
,
P.
,
Conroy
,
J.L.
,
Piche
,
J.W.
, and
Winsor
,
P.
, “
Electromagnetic Shielding Composite Comprising Nanotubes
,” U.S. Patent No. 6,265,466. (
2001
).
55.
Xie
,
P.
,
Gu
,
P.
, and
Beaudoin
,
J.J.
, “
Conductive Concrete Cement-Based Compositions
,” U.S. Patent 5,447,564 (
1995
).
56.
Yehia
,
S.
and
Tuan
,
C.Y.
, “
Conductive Concrete Overlay for Bridge Deck Deicing
,”
ACI Mater. J.
, Vol.
96
, No.
3
,
1999
, pp.
382
390
.
57.
Concrete and Construction Engineering
,
Electrical Properties of Concrete
, Vol.
58
, No. 5,
London
,
1963
, p.195.
58.
Whittington
,
H.
,
McCarter
,
W.
, and
Forde
,
M.C.
, “
Conduction of Electricity Through Concrete
,”
Mag. Concr. Res.
, Vol.
33
, No.
114
,
1981
, pp.
48
60
. https://doi.org/10.1680/macr.1981.33.114.48
59.
Farrar
,
J.J.
, “
Electrically Conductive Concrete
,”
GEC J. Sci. Technol.
, Vol.
45
, No.
1
,
1978
, pp.
45
48
.
60.
Xie
,
P.
,
Gu
,
P.
, and
Beaudoin
,
J.J.
, “
Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibers
,”
J. Mater. Sci.
, Vol.
31
, No.
15
,
1996
, pp.
4093
4097
. https://doi.org/10.1007/BF00352673
61.
Tuan
,
C.Y.
and
Yehia
,
S.A.
, “
Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing
,”
ACI Mater. J.
, Vol.
101
,
2004
, pp.
287
293
.
62.
Yehia
,
S.
, “
Electrically Conductive Concrete Proves Effective as Bridge Deicer
,”
Road Bridges Tech. Art.
, Vol.
46
,
2008
, pp.
56
60
.
63.
Wen
,
S.
and
Chung
,
D.D. L.
, “
Electric Polarization in Carbon Fiber-Reinforced Cement
,”
Cem. Concr. Res.
, Vol.
31
, No.
1
,
2001
, pp.
141
147
. https://doi.org/10.1016/S0008-8846(00)00382-3
64.
Cao
,
J.
and
Chung
,
D.D. L.
, “
Electric Polarization and Depolarization in Cement-Based Materials, Studied by Apparent Electrical Resistance Measurement
,”
Cem. Concr. Res.
, Vol.
34
, No.
3
,
2004
, pp.
481
485
. https://doi.org/10.1016/j.cemconres.2003.09.003
65.
Pozar
,
D.
,
Microwave Engineering
, 4th ed.,
Wiley and Sons Inc.
,
New York
,
2011
.
66.
Casey
,
K.F.
, “
Electromagnetic Shielding Behavior of Wire-Mesh Screens
,”
IEEE Trans. Electron. Compat.
, Vol.
30
, No.
3
,
1988
, pp.
298
306
. https://doi.org/10.1109/15.3309
67.
Antonini
,
G.
,
Orlandi
,
A.
, and
D’elia
,
S.
,
2003
, “
Shielding Effects of Reinforced Concrete Structures to Electromagnetic Fields Due to GSM and UMTS Systems
,”
IEEE Trans. Magn.
, Vol.
39
, No.
3
, pp.
1582
1585
. https://doi.org/10.1109/TMAG.2003.810327
This content is only available via PDF.
You do not currently have access to this content.