Abstract

This study assessed the laboratory model investigation to evaluate the feasibility of using reinforced alkali-activated binder for the purpose of soil stabilization. This paper consisted of two stages. The first stage investigated the efficacy of incorporating alkali-activated binder in conjunction with reinforcement inclusion, which improves satisfactory mechanical properties in treated soil. As such, in the first stage, palm oil fuel ash (POFA) and wollastonite microfibers were incorporated in the form of precursor and dispersed discrete reinforcement, respectively. In this stage, the unconfined compressive strength (UCS) was used as a practical indicator to investigate strength development. In the second stage of this study, a model procedure of interaction between a strip footing model and stabilized clayey soil by column technique was examined. From the perspective of strength development, alkali-activated agro-waste showed, undoubtedly, a very effective method to enhance the peak strength of investigated soil. Besides, the inclusion of the reinforcement material in alkali-activated samples increased the peak stress and improved the post-peak behavior, namely by modifying the original brittle response of the stabilized soil into a more ductile one. Depending on the replacement area ratio, results of the second phase showed that a considerable bearing capacity increase of up to 197 % of treated columns could be achieved.

References

1.
Kirsch
,
K.
and
Bell
,
A.
,
Ground Improvement
,
CRC Press
,
Boca Raton, FL
,
2012
.
2.
Terashi
,
M.
, “
Ground Improved by Deep Mixing Method
,” presented at the
10th International Conference on Soil Mechanics and Foundation Engineering
,
Stockholm, Sweden
, June 15–19,
1981
,
Balkema
,
Rotterdam, the Netherlands
, pp.
770
780
.
3.
Okumura
,
T.
, “
Deep Mixing Method of Japan
,” presented at the
2nd International Conference on Ground Improvement Geosystem
,
Tokyo, Japan
, May 14–17,
1996
,
TRB
,
Washington, D.C.
, pp.
879
887
.
4.
Porbaha
,
A.
, “
State of the Art in Deep Mixing Technology. Part I: Basic Concepts and Overview
,”
Ground Improvement
, Vol.
2
, No.
2
,
1998
, pp.
81
92
. https://doi.org/10.1680/gi.1998.020204
5.
Fang
,
Y.
,
Chung
,
Y.
,
Yu
,
F.
, and
Chen
,
T.
, “
Properties of Soil-Cement Stabilised With Deep Mixing Method
,”
Ground Improvement
, Vol.
5
, No.
2
,
2001
, pp.
69
74
. https://doi.org/10.1680/grim.2001.5.2.69
6.
Kitazume
,
M.
,
The Deep Mixing Method-Principle, Design and Construction
,
Balkema Press
,
Rotterdam, the Netherlands
,
2002
.
7.
Kitazume
,
M.
and
Terashi
,
M.
,
The Deep Mixing Method
,
CRC Press
,
Boca Raton, FL
,
2013
.
8.
Bouassida
,
M.
and
Porbaha
,
A.
, “
Ultimate Bearing Capacity of Soft Clays Reinforced by a Group of Columns-Application to a Deep Mixing Technique
,”
Soils Found.
, Vol.
44
, No.
3
,
2004
, pp.
91
101
. https://doi.org/10.3208/sandf.44.3_91
9.
Topolnicki
,
M.
, “
In Situ Soil Mixing
,”
Proc. ICE-Ground Improvement
, Vol.
5
, No.
2
,
2004
, pp.
331
428
.
10.
Pourakbar
,
S.
, “
Deep Mixing Columns
,”
Pertanika J. Scholar. Res. Rev.
, Vol.
1
, No.
1
,
2015
, pp.
8
17
.
11.
Fasihnikoutalab
,
M. H.
,
Asadi
,
A.
,
Huat
,
B. K.
,
Ball
,
R. J.
,
Pourakbar
,
S.
, and
Singh
,
P.
, “
Utilisation of Carbonating Olivine for Sustainable Soil Stabilisation
,”
Environmental Geotechnics
,
ICE Publishing
,
2016
, https://doi.org/10.1680/jenge.15.00018
12.
Raju
,
V.
,
Abdullah
,
A.
, and
Arulrajah
,
A.
, “
Ground Treatment Using Dry Deep Soil Mixing for a Railway Embankment in Malaysia
,” presented at the
2nd Conference on Advances in Soft Soil Engineering and Technology
,
Kuala Lumpur, Malaysia
, July 2–4,
2003
.
13.
Song-Yu
,
L.
,
Yao-Lin
,
Y.
, and
Zhi-Duo
,
Z.
, “
Comparison Tests on Field Bidirectional Deep Mixing Column for Soft Ground Improvement in Expressway
,”
Chin. J. Rock Mech. Eng.
, Vol.
27
, No.
11
,
2008
, pp.
2272
2280
.
14.
Al Tabbaa
,
A.
and
Evans
,
C.
, “
Deep Soil Mixing in the UK: Geoenvironmental Research and Recent Applications
,”
Land Contam. Reclam.
, Vol.
11
, No.
1
,
2003
, pp.
1
14
. https://doi.org/10.2462/09670513.620
15.
McGuire
,
M.
,
Templeton
,
E.
, and
Filz
,
G.
, “
Stability Analyses of a Floodwall With Deep-Mixed Ground Improvement at Orleans Avenue Canal, New Orleans
,”
Geotech. Geol. Eng.
, Vol.
211
, No.
7
,
2012
, pp.
199
209
.
16.
Broms
,
B. B.
and
Boman
,
P.
, “
Lime Columns-A New Foundation Method
,”
J. Geotech. Geoenviron. Eng.
, Vol.
105
, No.
4
,
1979
, pp.
539
556
.
17.
Chew
,
S.
,
Kamruzzaman
,
A.
, and
Lee
,
F.
, “
Physicochemical and Engineering Behavior of Cement Treated Clays
,”
J. Geotech. Geoenviron. Eng.
, Vol.
130
, No.
7
,
2004
, pp.
696
706
. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)
18.
Lorenzo
,
G.
and
Bergado
,
D.
, “
Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing
,”
J. Mater. Civ. Eng.
, Vol.
18
, No.
2
,
2006
, pp.
161
174
. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(161)
19.
Okyay
,
U.
and
Dias
,
D.
, “
Use of Lime and Cement Treated Soils as Pile Supported Load Transfer Platform
,”
Eng. Geol.
, Vol.
114
, No.
1
,
2010
, pp.
34
44
. https://doi.org/10.1016/j.enggeo.2010.03.008
20.
Pourakbar
,
S.
,
Asadi
,
A.
,
Huat
,
B. B.
, and
Fasihnikoutalab
,
M. H.
, “
Stabilization of Clayey Soil Using Ultrafine Palm Oil Fuel Ash (POFA) and Cement
,”
Transp. Geotech.
, Vol.
3
,
2015
, pp.
24
35
. https://doi.org/10.1016/j.trgeo.2015.01.002
21.
Maher
,
M.
and
Ho
,
Y.
, “
Behavior of Fiber-Reinforced Cemented Sand Under Static And Cyclic Loads
,”
Geotech. Test. J.
, Vol.
16
, No.
3
,
1993
, pp.
330
338
. https://doi.org/10.1520/GTJ10054J
22.
Kaniraj
,
S. R.
and
Havanagi
,
V. G.
, “
Behavior of Cement-Stabilized Fiber-Reinforced Fly Ash-Soil Mixtures
,”
J. Geotech. Geoenviron. Eng.
, Vol.
127
, No.
7
,
2001
, pp.
574
584
. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(574)
23.
Tang
,
C.
,
Shi
,
B.
,
Gao
,
W.
,
Chen
,
F.
, and
Cai
,
Y.
, “
Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil
,”
Geotext. Geomembr.
, Vol.
25
, No.
3
,
2007
, pp.
194
202
. https://doi.org/10.1016/j.geotexmem.2006.11.002
24.
Park
,
S. S.
, “
Effect of Fiber Reinforcement and Distribution on Unconfined Compressive Strength of Fiber-Reinforced Cemented Sand
,”
Geotext. Geomembr.
, Vol.
27
, No.
2
,
2009
, pp.
162
166
. https://doi.org/10.1016/j.geotexmem.2008.09.001
25.
Park
,
S. S.
, “
Unconfined Compressive Strength and Ductility of Fiber-Reinforced Cemented Sand
,”
Constr. Build. Mater.
, Vol.
25
, No.
2
,
2011
, pp.
1134
1138
. https://doi.org/10.1016/j.conbuildmat.2010.07.017
26.
Estabragh
,
A.
,
Namdar
,
P.
, and
Javadi
,
A.
, “
Behavior of Cement-Stabilized Clay Reinforced With Nylon Fiber
,”
Geosynth. Int.
, Vol.
19
, No.
1
,
2012
, pp.
85
92
. https://doi.org/10.1680/gein.2012.19.1.85
27.
Sukontasukkul
,
P.
and
Jamsawang
,
P.
, “
Use of Steel and Polypropylene Fibers to Improve Flexural Performance of Deep Soil–Cement Column
,”
Constr. Build. Mater.
, Vol.
29
,
2012
, pp.
201
205
. https://doi.org/10.1016/j.conbuildmat.2011.10.040
28.
Correia
,
A. A.
,
Oliveira
,
P. J. V.
, and
Custódio
,
D. G.
, “
Effect of Polypropylene Fibres on the Compressive and Tensile Strength of a Soft Soil, Artificially Stabilised With Binders
,”
Geotext. Geomembr.
, Vol.
43
, No.
2
,
2015
, pp.
97
106
. https://doi.org/10.1016/j.geotexmem.2014.11.008
29.
Cristelo
,
N.
,
Cunha
,
V. M.
,
Dias
,
M.
,
Gomes
,
A. T.
,
Miranda
,
T.
, and
Araújo
,
N.
, “
Influence of Discrete Fibre Reinforcement on the Uniaxial Compression Response and Seismic Wave Velocity of a Cement-Stabilised Sandy-Clay
,”
Geotext. Geomembr.
, Vol.
43
, No.
1
,
2015
, pp.
1
13
. https://doi.org/10.1016/j.geotexmem.2014.11.007
30.
Gartner
,
E.
, “
Industrially Interesting Approaches to ‘Low-CO2’ Cements
,”
Cem. Concr. Res.
, Vol.
34
, No.
9
,
2004
, pp.
1489
1498
. https://doi.org/10.1016/j.cemconres.2004.01.021
31.
Matthews
,
H. D.
,
Gillett
,
N. P.
,
Stott
,
P. A.
, and
Zickfeld
,
K.
, “
The Proportionality of Global Warming to Cumulative Carbon Emissions
,”
Nature
, Vol.
459
, No.
7248
,
2009
, pp.
829
832
. https://doi.org/10.1038/nature08047
32.
Taylor
,
M.
,
Tam
,
C.
, and
Gielen
,
D.
, “
Energy Efficiency and CO2 Emissions From the Global Cement Industry
,”
Int. Energy Agency
, Vol.
5
, No.
2
,
2006
, pp.
117
126
.
33.
Lothenbach
,
B.
,
Scrivener
,
K.
, and
Hooton
,
R.
, “
Supplementary Cementitious Materials
,”
Cem. Concr. Res.
, Vol.
41
, No.
12
,
2011
, pp.
1244
1256
. https://doi.org/10.1016/j.cemconres.2010.12.001
34.
Van Jaarsveld
,
J.
,
Van Deventer
,
J.
, and
Lorenzen
,
L.
, “
The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part I. Theory and Applications
,”
Miner. Eng.
, Vol.
10
, No.
7
,
1997
, pp.
659
669
. https://doi.org/10.1016/S0892-6875(97)00046-0
35.
Duxson
,
P.
,
Fernández-Jiménez
,
A.
,
Provis
,
J.
,
Lukey
,
G.
,
Palomo
,
A.
, and
Van Deventer
,
J.
, “
Geopolymer Technology: The Current State of the Art
,”
J. Mater. Sci.
, Vol.
42
, No.
9
,
2007
, pp.
2917
2933
. https://doi.org/10.1007/s10853-006-0637-z
36.
McLellan
,
B. C.
,
Williams
,
R. P.
,
Lay
,
J.
,
Van Riessen
,
A.
, and
Corder
,
G. D.
, “
Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement
,”
J. Cleaner Prod.
, Vol.
19
, No.
9
,
2011
, pp.
1080
1090
. https://doi.org/10.1016/j.jclepro.2011.02.010
37.
Ahmari
,
S.
,
Ren
,
X.
,
Toufigh
,
V.
, and
Zhang
,
L.
, “
Production of Geopolymeric Binder From Blended Waste Concrete Powder and Fly Ash
,”
Constr. Build. Mater.
, Vol.
35
,
2012
, pp.
718
729
. https://doi.org/10.1016/j.conbuildmat.2012.04.044
38.
Turner
,
L. K.
and
Collins
,
F. G.
, “
Carbon Dioxide Equivalent (CO2) Emissions: A Comparison Between Geopolymer and OPC Cement Concrete
,”
Constr. Build. Mater.
, Vol.
43
,
2013
, pp.
125
130
. https://doi.org/10.1016/j.conbuildmat.2013.01.023
39.
Duxson
,
P.
,
Provis
,
J. L.
,
Lukey
,
G. C.
,
Mallicoat
,
S. W.
,
Kriven
,
W. M.
, and
Van Deventer
,
J. S.
, “
Understanding the Relationship Between Geopolymer Composition, Microstructure and Mechanical Properties
,”
Colloids Surf. A: Physicochem. Eng. Aspects
, Vol.
269
, No.
1
,
2005
, pp.
47
58
. https://doi.org/10.1016/j.colsurfa.2005.06.060
40.
Van Deventer
,
J.
,
Provis
,
J.
,
Duxson
,
P.
, and
Lukey
,
G.
, “
Reaction Mechanisms in the Geopolymeric Conversion of Inorganic Waste to Useful Products
,”
J. Hazard. Mater.
, Vol.
139
, No.
3
,
2007
, pp.
506
513
. https://doi.org/10.1016/j.jhazmat.2006.02.044
41.
Pourakbar
,
S.
and
Huat
,
B. K.
, “
A Review of Alternatives Traditional Cementitious Binders for Engineering Improvement of Soils
,”
Int. J. Geotech. Eng.
, Vol.
11
, No.
2
,
2016
, pp.
206
216
. https://doi.org/10.1080/19386362.2016.1207042
42.
Zhang
,
M.
,
Guo
,
H.
,
El-Korchi
,
T.
,
Zhang
,
G.
, and
Tao
,
M.
, “
Experimental Feasibility Study of Geopolymer as the Next-Generation Soil Stabilizer
,”
Constr. Build. Mater.
, Vol.
47
,
2013
, pp.
1468
1478
. https://doi.org/10.1016/j.conbuildmat.2013.06.017
43.
Zhang
,
M.
,
Zhao
,
M.
,
Zhang
,
G.
,
Nowak
,
P.
,
Coen
,
A.
, and
Tao
,
M.
, “
Calcium-Free Geopolymer as a Stabilizer for Sulfate-Rich Soils
,”
Appl. Clay Sci.
, Vol.
108
,
2015
, pp.
199
207
. https://doi.org/10.1016/j.clay.2015.02.029
44.
Pourakbar
,
S.
,
Asadi
,
A.
,
Huat
,
B. B.
, and
Fasihnikoutalab
,
M. H.
, “
Soil Stabilization With Alkali-Activated Agro-Waste
,”
Environ. Geotech.
, Vol.
2
, No.
6
,
2015
, pp.
359
370
. https://doi.org/10.1680/envgeo.15.00009
45.
Cristelo
,
N.
,
Glendinning
,
S.
, and
Pinto
,
A. T.
, “
Deep Soft Soil Improvement by Alkaline Activation
,”
Proc. ICE-Ground Improve.
, Vol.
164
, No.
2
,
2011
, pp.
73
82
. https://doi.org/10.1680/grim.900032
46.
Cristelo
,
N.
,
Glendinning
,
S.
,
Fernandes
,
L.
, and
Pinto
,
A. T.
, “
Effect of Calcium Content on Soil Stabilisation With Alkaline Activation
,”
Constr. Build. Mater.
, Vol.
29
,
2012
, pp.
167
174
. https://doi.org/10.1016/j.conbuildmat.2011.10.049
47.
Cristelo
,
N.
,
Glendinning
,
S.
,
Miranda
,
T.
,
Oliveira
,
D.
, and
Silva
,
R.
, “
Soil Stabilisation Using Alkaline Activation of Fly Ash for Self Compacting Rammed Earth Construction
,”
Constr. Build. Mater.
, Vol.
36
,
2012
, pp.
727
735
. https://doi.org/10.1016/j.conbuildmat.2012.06.037
48.
Cristelo
,
N.
,
Glendinning
,
S.
,
Fernandes
,
L.
, and
Pinto
,
A. T.
, “
Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilisation
,”
Acta Geotech.
, Vol.
8
, No.
4
,
2013
, pp.
395
405
. https://doi.org/10.1007/s11440-012-0200-9
49.
Singhi
,
B.
,
Laskar
,
A. I.
, and
Ahmed
,
M. A.
, “
Investigation on Soil–Geopolymer With Slag, Fly Ash and Their Blending
,”
Arab. J. Sci. Eng.
, Vol.
41
, No.
2
,
2015
, pp.
393
400
.
50.
Low
,
N. M.
and
Beaudoin
,
J. J.
, “
The Effect of Wollastonite Micro-Fibre Aspect Ratio on Reinforcement of Portland Cement-Based Binders
,”
Cem. Concr. Res.
, Vol.
23
, No.
6
,
1993
, pp.
1467
1479
. https://doi.org/10.1016/0008-8846(93)90083-L
51.
Low
,
N. M.
and
Beaudoin
,
J. J.
, “
The Flexural Toughness and Ductility of Portland Cement-Based Binders Reinforced With Wollastonite Micro-Fibres
,”
Cem. Concr. Res.
, Vol.
24
, No.
2
,
1994
, pp.
250
258
. https://doi.org/10.1016/0008-8846(94)90050-7
52.
Low
,
N. M.
and
Beaudoin
,
J.
, “
Stability of Portland Cement-Based Binders Reinforced With Natural Wollastonite Micro-Fibres
,”
Cem. Concr. Res.
, Vol.
24
, No.
5
,
1994
, pp.
874
884
. https://doi.org/10.1016/0008-8846(94)90007-8
53.
Dey
,
V.
,
Kachala
,
R.
,
Bonakdar
,
A.
, and
Mobasher
,
B.
, “
Mechanical Properties of Micro and Sub-Micron Wollastonite Fibers in Cementitious Composites
,”
Constr. Build. Mater.
, Vol.
82
,
2015
, pp.
351
359
. https://doi.org/10.1016/j.conbuildmat.2015.02.084
54.
De Aza
,
P.
,
Guitian
,
F.
, and
De Aza
,
S.
, “
Bioactivity of Wollastonite Ceramics: In Vitro Evaluation
,”
Scr. Metall. Mater.
, Vol.
31
, No.
8
,
1994
, pp.
1001
1005
. https://doi.org/10.1016/0956-716X(94)90517-7
55.
Sreekanth Chakradhar
,
R.
,
Nagabhushana
,
B.
,
Chandrappa
,
G.
,
Ramesh
,
K.
, and
Rao
,
J.
, “
Solution Combustion Derived Nanocrystalline Macroporous Wollastonite Ceramics
,”
Mater. Chem. Phys.
, Vol.
95
, No.
1
,
2006
, pp.
169
175
. https://doi.org/10.1016/j.matchemphys.2005.06.002
56.
Ransinchung
,
G.
,
Kumar
,
B.
, and
Kumar
,
V.
, “
Assessment of Water Absorption and Chloride Ion Penetration of Pavement Quality Concrete Admixed With Wollastonite and Microsilica
,”
Constr. Build. Mater.
, Vol.
23
, No.
2
,
2009
, pp.
1168
1177
. https://doi.org/10.1016/j.conbuildmat.2008.06.011
57.
Soliman
,
A.
and
Nehdi
,
M.
, “
Effect of Natural Wollastonite Microfibers on Early-Age Behavior of UHPC
,”
J. Mater. Civ. Eng.
, Vol.
24
, No.
7
,
2011
, pp.
816
824
. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000473
58.
Broms
,
B.
, “
Lime and Lime/Columns. Summary and Visions
,” presented at the
4th International Conference on Ground Improvement Geosystems
, Keynotes Lecture,
Helsinki, Finland
, June 7–9,
2000
, pp.
43
93
.
59.
ASTM D2487-11,
Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
,
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
60.
BS 1377-2:1990,
Methods of Test for Soils and Civil Engineering Purposes
,
British Standards Institution
,
London
,
1990
.
61.
Sheeran
,
D.
and
Krizek
,
R.
, “
Preparation of Homogeneous Soil Samples by Slurry Consolidation
,”
J. Mater.
, Vol.
6
, No.
2
,
1971
, pp.
356
373
. https://doi.org/10.1007/BF02403104,10.1007/PL00020379
62.
Kitazume
,
M.
, “
Bearing Capacity of Improved Ground With Column Type DMM
,” presented at the
2nd International Conference on Ground Improvement Geosystems
,
Tokyo, Japan
, May 14–17,
2002
,
AA Balkema
,
Rotterdam, the Netherlands
, pp.
503
508
.
63.
Goda
,
Y.
, “
Research Group of Marine Observation Data Analysis and Application
.”
Coastal Wave Observation, Coastal Development Institute of Technology2002
,
KORDI press
, Japan,
2002
.
64.
Chan
,
C. M.
,
A Laboratory Investigation of Shear Wave Velocity in Stabilised Soft Soils
,
University of Sheffield
,
Sheffield, UK
,
2006
.
65.
Bruce
,
D. A.
, “
Practitioner's Guide to the Deep Mixing Method
,”
Proc. ICE-Ground Improvement
, Vol.
5
, No.
3
,
2001
, pp.
95
100
. https://doi.org/10.1680/grim.2001.5.3.95
66.
Broms
,
B.
,
Deep Soil Stabilization: Design and Construction of Lime and Lime/Cement Columns
,
Royal Institute of Technology
,
Stockholm, Sweden
,
2003
.
67.
Bergado
,
D.
,
Anderson
,
L.
,
Miura
,
N.
, and
Balasubramaniam
,
A.
, “
Lime/Cement Deep Mixing Method
,” presented at the
Soft Ground Improvement in Lowland and Environments
,
1996
,
A.A. Balkelma
,
Rotterdam, the Netherlands
, pp.
99
130
68.
Yip
,
C. K.
,
Lukey
,
G. C.
,
Provis
,
J. L.
, and
van Deventer
,
J. S.
, “
Effect of Calcium Silicate Sources on Geopolymerisation
,”
Cem. Concr. Res.
, Vol.
38
, No.
4
,
2008
, pp.
554
564
. https://doi.org/10.1016/j.cemconres.2007.11.001
69.
Sivakumar Babu
,
G.
and
Vasudevan
,
A.
, “
Strength and Stiffness Response of Coir Fiber-Reinforced Tropical Soil
,”
J. Mater. Civ. Eng.
, Vol.
20
, No.
9
,
2008
, pp.
571
577
. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(571)
70.
Maliakal
,
T.
and
Thiyyakkandi
,
S.
, “
Influence of Randomly Distributed Coir Fibers on Shear Strength of Clay
,”
Geotech. Geol. Eng.
, Vol.
31
, No.
2
,
2013
, pp.
425
433
. https://doi.org/10.1007/s10706-012-9595-1
71.
Pourakbar
,
S.
,
Asadi
,
A.
,
Huat
,
B. B.
,
Cristelo
,
N.
, and
Fasihnikoutalab
,
M. H.
, “
Application of Alkali-Activated Agro-Waste Reinforced With Wollastonite Fibers in Soil Stabilization
,”
J. Mater. Civ. Eng.
,
2016
, 04016206. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0001735
72.
Naaman
,
A. E.
,
Harajli
,
M.
, and
Wight
,
J. K.
, “
Analysis of Ductility in Partially Prestressed Concrete Flexural Members
,”
PCI J.
, Vol.
31
, No.
3
,
1986
, pp.
64
87
. https://doi.org/10.15554/pcij.05011986.64.87
73.
Silva
,
F.
and
Thaumaturgo
,
C.
, “
Fibre Reinforcement and Fracture Response in Geopolymeric Mortars
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
26
, No.
2
,
2003
, pp.
167
172
. https://doi.org/10.1046/j.1460-2695.2003.00625.x
This content is only available via PDF.
You do not currently have access to this content.