Abstract

Cement-based controlled low-strength material, also called flowable fill, is often used as both subbase and subgrade material in pavement construction. This article investigates the properties of a pond ash–based flowable fill with special reference to pavement applications. Properties such as flowability, unconfined compressive strength, California bearing ratio (CBR), and resilient modulus (MR) for different mixes were studied. It was observed that addition of 2–3 % of cement in the pond ash can make a good flowable fill without the need of any other admixtures. Substantial improvement in CBR and resilient modulus values were observed when compared with the compacted pond ash. The results of the study show that the pond-based flowable fill can be used as an effective alternative material for subbase and subgrade layers in pavements.

References

1.
Indian Roads Congress
Guidelines for the Design of Flexible Pavements, IRC:37
(
New Delhi, India
:
Indian Roads Congress
,
2012
) 108.
2.
Senol
A.
,
Edil
T. B.
, and
Benson
C. H.
, “
Use of Class C Fly Ash for Stabilization of Soft Subgrade
” (paper presentation, Fifth International Congress on Advances in Civil Engineering,
Istanbul, Turkey
, September 25-27,
2002
).
3.
Saltan
M.
and
Fındık
F. S.
, “
Stabilization of Subbase Layer Materials with Waste Pumice in Flexible Pavement
,”
Building and Environment
43
, no. 
4
(April
2008
):
415
421
, https://doi.org/10.1016/j.buildenv.2007.01.007
4.
Naganathan
S.
,
Razak
H. A.
, and
Hamid
S. N. A.
, “
Properties of Controlled Low-Strength Material Made Using Industrial Waste Incineration Bottom Ash and Quarry Dust
,”
Materials & Design
33
(January
2012
):
56
63
, https://doi.org/10.1016/j.matdes.2011.07.014
5.
Little
D. N.
and
Nair
S.
,
Recommended Practice for Stabilization of Subgrade Soils and Base Materials, NCHRP Report 20-07
(
Washington, DC
:
National Cooperative Highway Research Program
,
2009
): 67.
6.
American Concrete Institute
Controlled Low-Strength Materials, ACI 229R-99
(
Farmington Hills, MI
:
American Concrete Institute
,
2005
): 15.
7.
Farrag
K.
,
Use Of Controlled Low-Strength Material (CLSM), Paper No. 11-0527
(
Washington, DC
:
Transportation Research Board
,
2011
):
1
25
.
8.
Lini Dev
K.
and
Robinson
R. G.
, “
Pond Ash Based Controlled Low Strength Flowable Fills for Geotechnical Engineering Applications
,”
International Journal of Geosynthetics and Ground Engineering
1
, no. 
4
(December
2015
):
1
13
, https://doi.org/10.1007/s40891-015-0035-1
9.
Naganathan
S.
,
Razak
H. A.
, and
Hamid
S. N. A.
, “
Corrosivity and Leaching Behavior of Controlled Low-Strength Material (CLSM) Made Using Bottom Ash and Quarry Dust
,”
Journal of Environmental Management
128
(October
2013
):
637
641
, https://doi.org/10.1016/j.jenvman.2013.06.009
10.
Janardhanam
R.
,
Burns
F.
, and
Peindl
R. D.
, “
Mix Design for Flowable Fly-Ash Backfill Material
,”
Journal of Materials in Civil Engineering
4
, no. 
3
(August
1992
):
252
263
, https://doi.org/10.1061/(ASCE)0899-1561(1992)4:3(252)
11.
Pons
F.
,
Landwermeyer
J. S.
, and
Kerns
L.
, “
Development of Engineering Properties for Regular and Quick-Set Flowable Fill
,” in
The Design and Application of Controlled Low-Strength Materials (Flowable Fill)
, ed.
Howard
A.
and
Hitch
J.
(
West Conshohocken, PA
:
1998
),
67
86
. https://doi.org/10.1520/STP13063S
12.
Lachemi
M.
,
Hossain
K. M. A.
,
Shehata
M.
, and
Thaha
W.
, “
Controlled Low Strength Materials Incorporating Cement Kiln Dust from Various Sources
,”
Cement and Concrete Composites
30
, no. 
5
(May
2008
):
381
392
, https://doi.org/10.1016/j.cemconcomp.2007.12.002
13.
Razak
H. A.
,
Naganathan
S.
, and
Hamid
S. N. A.
, “
Controlled Low-Strength Material Using Industrial Waste Incineration Bottom Ash and Refined Kaolin
,”
Arabian Journal of Science and Engineering
35
, no. 
2
(
2010
):
53
67
.
14.
Wu
J. Y.
and
Lin
Y. J.
, “
Use of Reservoir Siltation as CLSM for Subgrade Constructions
,”
Advanced Materials Research
723
(
2013
):
535
542
, https://doi.org/10.4028/www.scientific.net/AMR.723.535
15.
Puppala
A. J.
,
Hoyos
L. R.
, and
Potturi
A. K.
, “
Resilient Moduli Response of Moderately Cement-Treated Reclaimed Asphalt Pavement Aggregates
,”
Journal of Materials in Civil Engineering
23
, no. 
7
(July
2011
):
990
999
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000268
16.
Rout
R. K.
,
Ruttanapormakul
P.
,
Valluru
S.
, and
Puppala
A. J.
, “
Resilient Moduli Behavior of Lime-Cement Treated Subgrade Soils
,”
GeoCongress
, ASCE (
2012
):
1428
1437
.
17.
Witczak
M. W.
and
Uzan
J.
,
The Universal Airport Design System, Report I of IV: Granular Material Characterization
(
College Park, MD
:
Department of Civil Engineering, University of Maryland
,
1988
).
18.
Bheemasetti
T. V.
,
Pedarla
A.
,
Puppala
A. J.
, and
Acharya
R.
, “
Design of Sustainable High-Volume Pavements Using Controlled Low-Strength Material from Native Soil
,”
Transportation Research Record: Journal of the Transportation Research Board
2509
, (
2015
):
10
17
, https://doi.org/10.3141/2509-02
19.
Meade
B. W.
,
Hunsucker
D. Q.
, and
Stone
M. D.
,
Evaluation of CLSM for Trench Backfill, Research Report - KTC-93-5
(
Lexington, KY
:
Kentucky Transportation Center
,
1993
).
20.
Butalia
T.
,
Wolfe
W.
,
Zand
B.
, and
Lee
J.
, “
Flowable Fill Using Flue Gas Desulfurization Material
,”
Journal of ASTM International
1
, no. 
6
(June
2004
):
1
12
, https://doi.org/10.1520/JAI11868
21.
Bassani
M.
,
Khosravifar
S.
,
Goulias
D. G.
, and
Schwartz
C. W.
, “
Long Term Resilient and Permanent Deformation Behaviour of Controlled Low Strength Materials for Pavement Applications
,”
Transportation Geotechnics
2
(March
2015
):
108
118
, https://doi.org/10.1016/j.trgeo.2014.12.001
22.
Qian
J.
,
Shu
X.
,
Dong
Q.
,
Ling
J.
, and
Huang
B.
, “
Laboratory Characterization of Controlled Low-Strength Materials
,”
Materials & Design
65
(January
2015
):
806
813
, https://doi.org/10.1016/j.matdes.2014.10.012
23.
Gupta
M.
and
Singh
S. P.
, “
Fly Ash Production and its Utilization in Different Countries
,”
Journal of Ultra Chemistry
9
(April
2013
):
156
160
.
24.
Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing
, ASTM G51-95 (2005) (West Conshohocken,
PA
:
ASTM International
,
2012
). https://doi.org/10.1520/G0051-95R05
25.
Standard Test Method for Flow Consistency of Controlled Low Strength Material
, ASTM D6103-04 (
West Conshohocken, PA
:
ASTM International
,
2004
). https://doi.org/10.1520/D6103_D6103M-17
26.
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
, ASTM D2166/ D2166M-13 (
West Conshohocken, PA
:
ASTM International
,
2013
). https://doi.org/10.1520/D2166_D2166M-13
27.
Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils
, ASTM D1883-07 (
West Conshohocken, PA
:
ASTM International
,
2007
). https://doi.org/10.1520/D1883-07
28.
Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials
, AASHTO T 307-99 (
Washington, DC
:
American Association of State Highway Transportation Officials
,
2017
). www.transportation.org
29.
Uzan
J.
, “
Characterization of Granular Materials
,”
Transportation Research Record
1022
(
1985
):
52
59
.
30.
Mohammed
L.
,
Huang
B.
,
Puppala
A.
, and
Allen
A.
, “
Regression Model for Resilient Modulus of Subgrade
,”
Transportaiont Research Record
1687
(
2018
):
47
54
, https://doi.org/10.3141/1687-06
31.
Schaefer
V. R.
,
White
D. J.
,
Ceylan
H.
, and
Stevens
L. J.
,
Design Guide for Improved Quality of Roadway Subgrades and Subbases, IHRB Proj. TR-525 6
(
Ames, IA
:
Iowa Highway Research Board
,
2008
):
18
133
.
32.
Black
W. P.
,
The Strength of Clay Subgrades: Its Measurement by a Penetrometer, TRRL Rep., LR901
(
Wokingham, UK
:
Transport and Road Research Laboratory
,
1979
).
33.
Brown
S. F.
,
Loach
S. C.
, and
O’Reilly
M.
,
Repeated Loading of Fine Grained Soils, TRRL Contr. Rep.
(
Wokingham, UK
:
Transport and Road Research Laboratory
, 1987.)
34.
Nguyen
B.T.
and
Mohajerani
A.
, “
Resilient Modulus of Fine Grained Soil and a Simple Testing and Calculation Method for Determining an Average Resilient Modulus Value for Pavement Design
,”
Transportation Geotechnics
7
(June
2016
):
59
70
, https://doi.org/10.1016/j.trgeo.2016.05.001
35.
Morgan
J.
, “
Response of Granular Materials to Repeated Loading
,”
Australian Road Research Board
3
, no. 
2
(
1966
):
1178
1192
.
36.
Jones
M. P.
and
Witczak
M. W.
, “
Subgrade Modulus on the San Diego Test Road
,”
Transportation Research Record
641
(
1977
):
1
6
.
37.
Mousa
E.
,
Azam
A.
,
El-Shabrawy
M.
, and
El-Badawy
S. M.
, “
Laboratory Characterization of Reclaimed Asphalt Pavement for Road Construction in Egypt
,”
Canadian Journal of Civil Engineering
44
, no. 
6
(June
2017
):
417
425
, https://doi.org/10.1139/cjce-2016-0435
38.
Witczack
M. W.
and
El-Basyouny
M. M.
,
Guide for Mechanistic-Emperical Design of New and Rehabilitated Pavement Structures- NCHRP 1-37A, Final Report
(
Washington, DC
:
National Cooperative Highway Research Program
,
2004
), 219.
39.
Lee
W.
,
Bohra
N. C.
,
Altschaeffl
A. G.
, and
White
T. D.
, “
Resilient Modulus of Cohesive Soils and the Effect of Freeze–Thaw
,”
Canadian Geotechnical Journal
32
, no. 
4
(August
1995
):
559
568
.
40.
Thompson
M. R.
and
Robnett
Q. L.
, “
Resilient Properties of Subgrade Soils
,”
Transportation Engineering Journal of ASCE
105
, no. 
1
, (
1979
):
71
89
.
41.
Heukelom
W.
and
Klomp
A. J. G.
, “
Dynamic Testing as a Means of Controlling Pavement during and After Construction
,” (paper presentation,
First International Conference on the Structural Design of Asphalt Pavement
,
Ann Arbor, MI
,
1962
).
42.
Green
J. L.
and
Hall
J. W.
,
Nondestructive Vibratory Testing of Airport Pavements: Experimental Test Results and Development of Evaluation Methodology and Procedure
,
Report No. FAA-RD-73-205
, Vol. 
1
, (Washington, DC: Federal Aviation Administration,
1975
), 209.
43.
Powell
W. D.
,
Potter
J. F.
,
Mayhew
H. C.
, and
Nunn
M. E.
,
The Structural Design of Bituminous Roads, TRRL Rep. LR 1132
(
Wokingham, UK
:
Transport and Road Research Laboratory
,
1984
), 62.
This content is only available via PDF.
You do not currently have access to this content.