Abstract

The dynamic response of a localized, heat-damaged, fiberglass-reinforced epoxy cantilever beam is obtained as a function of damaged length and damage severity. A heat-damaged area causes a reduction in the local stiffness of the beam and introduces a complex damping in the damaged zone. These variations in the local mechanical properties could result in changing vibration characteristics of the beam. The variations in the system characteristic could then be used to assess the structural integrity of the composite beam. A cantilever beam made of a glass fiber-resin composite material and damaged by a hot tip contact element and a laser beam is evaluated for its dynamic response using numerical methods. The laser beam caused local melting of many fibers in the damaged area and thus reducing the stiffness of the beam in the damaged area. The beam is analyzed by modeling it as a lumped system and a continuous system and by a finite element. The goal of the research is to find out whether the changes in the frequency response of the damaged beam can be used as a diagnostic tool for estimating the severity of the damage. The results show that the size and location of damage are equally as important as the local stiffness and damping of the damaged region in terms of their effects on the beam resonant frequencies. The results indicate that the resonance frequencies may not be suitable parameters for estimating the residual tensile strength of the composite. A 50% reduction in the local bending rigidity produced relatively little change in the system first resonance frequency. In contrast, it significantly reduced the residual tensile strength of the composite.

References

1.
Achenbach
,
J. D.
,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Co.
,
Amsterdam
,
1973
.
2.
Duke
,
J. D.
 Jr.
,
Henneke
,
E. G.
,
Kiernan
M. T.
, and
Grosskopf
,
P. P.
, “
Ultrasonic Stress Wave Characterization of Composite Materials
,” NASA CR 4187,
05
1986
.
3.
Pocheco
,
T.
,
Nayeb-Hashemi
H.
, and
Sallam
,
H. M.
, “
Acoustic Emission in a Nextel 440 Fiber Reinforced 6061 Al Composite
,”
Journal of Acoustic Emission
, Vol.
14
, No.
2
,
1996
, pp.
85
-
95
.
4.
Nayeb-Hashemi
,
H.
,
Kisnomo
P.
, and
Sanie
,
N.
, “
Nondestructive Evaluation of Fiberglass-reinforced Plastic Subjected to Localized Heat Damage Using Acoustic Emission
,”
Journal of Acoustic Emission
, Vol.
14
, No.
1–4
,
1998
, pp.
33
-
42
.
5.
Nayeb-Hashemi
,
H.
,
Cohen
M. D.
, and
Erturk
,
T.
, “
Evaluation of Fatigue Damage on the Mechanical Properties of Fiber Reinforced Cement Pastes
,”
Journal of Cement and Concrete Research
, Vol.
15
,
1985
, pp.
85
-
95
.
6.
Aoki
,
R. M.
,
Busse
,
G.
,
Eberle
,
K.
,
Hansel
,
C.
,
Schanz
,
P.
and
Wu
,
D.
, “
NDI Evaluation of Local Oxidises C/C-SiC Specimens
,”
Non-Destructive Testing and Condition Monitoring
, Vol.
40
, No.
10
,
1998
, pp.
706
-
711
.
7.
Boxwell
,
R. M.
, “
Qualitative Versus Quantitative Nondestructive Evaluation Techniques for Composites
,”
International SAMPE Technical Conference
,
Orlando, FL
, 28 Oct.–1 Nov., Vol.
29
,
1997
, pp.
186
-
196
.
8.
Nori
,
C. V.
,
Mantena
,
R. P.
, and
McCarty
,
T. A.
, “
experimental and Finite Element Analysis of Pultruded Glass-Graphite/Epoxy Hybrids in Axial and Flexural Modes of Vibration
,”
Journal of Composite Materials
, Vol.
30
, No.
181
,
1996
, pp.
1996
-
2018
.
9.
Balasubramaniam
,
K.
,
Alluri
,
S.
,
Nidumolu
P.
, and
Mantena
,
P.
, “
Ultrasonic and Vibration Methods for the Characterization of Pultruded Composites
,”
Composites Engineering Wave Propagation in Composites and Non-Destructive Evaluation, Proceeding of the International Conference for Composites Engineering
,
New Orleans
,
1994
, pp.
1433
-
1451
.
10.
Vaidya
,
U. K.
,
Dadzie
,
P.
,
Haque
,
A.
,
Mahfuz
,
H.
, and
Jeelani
,
S.
, “
Nondestructive Evaluation and Characterization of Microfibers Modified Textile Carbon-Phenolic and Carbon-Carbon Composites
,”
Journal of Reinforced Plastic and Composites
, Vol.
16
, No.
11
,
1997
, pp.
968
-
1001
.
11.
McManus
,
H. L.
and
Springer
,
G. L.
, “
High Temperature Thermo Mechanical Behavior of Carbon Phenolic and Carbon-Carbon Composites, I. Analysis
,”
Journal of Composite Materials
, Vol.
26
, No.
2
,
1992
, pp.
206
-
209
.
12.
McManus
H. L.
and
Springer
,
G. L.
, “
High Temperature Thermo Mechanical Behavior of Carbon-Phenolic and Carbon-Carbon composites, II. Results
,”
Journal of Composite Materials
, Vol.
26
, No.
2
,
1992
, pp.
230
-
255
.
13.
Kerr
J. R.
and
Haskins
,
J. F.
, “
Effects of 50000 Hours of Thermal Aging on Graphite/Epoxy and Graphite/Polymide Composites
,”
AIAA Journal
, Vol.
22
,
1984
, pp.
96
-
102
.
14.
Carrol
,
E. A.
,
Mehrkam
,
P. A.
and
Cochran
,
R.
, “
Heat Damage Evaluation of Painted Graphite/Epoxy Composites
,”
Proceeding Conference on Characterization and NDE of Heat Damage in Graphite Epoxy Composites
, 27–28 April,
Orlando, Florida
,
1993
, pp.
113
-
124
.
15.
Fisher
,
W. G.
,
Storey
,
J. M. E.
,
Sharp
,
S. L.
,
Janke
,
C. J.
, and
Wachter
,
E. A.
, “
Nondestructive Inspection of Graphite/Epoxy composites for Heat Damage Using Laser Induced Fluorescence
,”
Applied Spectroscopy
, Vol.
49
,
1995
, pp.
1225
-
1231
.
16.
Kibler
,
K. G.
,
Carter
H. G.
, and
Eisenmann
,
J. R.
, “
Residual Strength of Laser Damaged Graphite Composites
,”
Journal of Composite Materials
, Vol.
9
,
01
1975
, pp.
28
-
32
.
17.
Pering
,
G. A.
,
Farrel
P. V.
, and
Springer
,
G.
, “
Degradation of Tensile and Shear Properties of Composite Subjected to Fire or High Temperature
,”
Journal of Composite Materials
, Vol.
14
,
1980
, pp.
54
-
68
.
18.
Nayeb-Hashemi
,
H.
,
Kisnomo
P.
, and
Saniei
,
N.
, “
Nondestructive Evaluation of Fiberglass Reinforced Plastic Subjected to Combined Localized Heat Damage and Fatigue Damage Using Acoustic Emission
,”
Journal of Nondestructive Evaluation
, Vol.
18
, No.
4
,
1999
, pp.
127
-
137
.
19.
Rao
,
S.
,
Mechanical Vibrations
,
Addison-Wesley
,
1995
.
20.
Dimarogonas
,
A.
,
Vibrations for Engineers
,
Prentice Hall
,
1992
.
This content is only available via PDF.
You do not currently have access to this content.