To protect the aircraft flight safety across the envelope of angle of attack, bifurcation analysis and backstepping method are investigated to predict and suppress the unstable nonlinear flight phenomena. By applying bifurcation analysis and continuation method to the flight motion, the onsets of both the chaotic phenomenon called falling leaf motion and the catastrophe phenomenon named coupled jump behavior are derived. To stabilize these unstable motions, a backstepping and disturbance observer based flight controller is designed. According to the main function of the control surface, we divide the flight controller into the airspeed subsystem and the flight path subsystem, where the airspeed subsystem is regulated by an adaptive dynamic inversion controller while the flight path subsystem is stabilized by a third-order compound controller. Considering the parametric uncertainties of aerodynamics, three sliding mode disturbance observers are presented as compensators to approximate the compound uncertainties. Simulations demonstrate that the proposed controller can recover the aircraft from falling leaf motion or coupled jump behavior to straight level flying.

References

1.
Morote
,
J.
,
2013
, “
Catastrophic Yaw. Why, What, How?
Prog. Aerosp. Sci.
,
63
, pp.
67
83
.
2.
Goman
,
M. G.
,
Zagainov
,
G. I.
, and
Khramtsovsky
,
A. V.
,
1997
, “
Application of Bifurcation Methods to Nonlinear Flight Dynamics Problems
,”
Prog. Aerosp. Sci.
,
33
(
9–10
), pp.
539
586
.
3.
Montgomery
,
R. C.
, and
Moul
,
M. T.
,
1966
, “
Analysis of Deep Stall Characteristics of T-Tailed Aircraft Configurations and Some Recovery Procedures
,”
J. Aircr.
,
3
(
6
), pp.
562
566
.
4.
Nayfeh
,
A. H.
,
Elzebda
,
J. M.
, and
Mook
,
D. T.
,
1989
, “
Analytical Study of the Subsonic Wing Rock Phenomenon for Slender Delta Wings
,”
J. Aircr.
,
26
(
9
), pp.
805
809
.
5.
Go
,
T. H.
, and
Ramnath
,
R. V.
,
2004
, “
Analytical Theory of Three Degree-of-Freedom Aircraft Wing Rock
,”
J. Guid. Control Dyn.
,
27
(
4
), pp.
657
664
.
6.
Go
,
T. H.
, and
Lie
,
F. A. P.
,
2008
, “
Analysis of Wing Rock Due to Rolling-Moment Hysteresis
,”
J. Guid. Control Dyn.
,
31
(
4
), pp.
849
857
.
7.
Johnson
,
B.
, and
Lind
,
R.
,
2010
, “
Characterizing Wing Rock With Variations in Size and Configuration of Vertical Tail
,”
J. Aircr.
,
47
(
2
), pp.
567
576
.
8.
Chakraborty
,
A.
,
Seiler
,
P.
, and
Balas
,
G. J.
,
2011
, “
Susceptibility of F/A-18 Flight Controllers to the Falling-Leaf Mode: Linear Analysis
,”
J. Guid. Control Dyn.
,
34
(
1
), pp.
57
72
.
9.
Chakraborty
,
A.
,
Seiler
,
P.
, and
Balas
,
G. J.
,
2011
, “
Susceptibility of F/A-18 Flight Controllers to the Falling-Leaf Mode: Nonlinear Analysis
,”
J. Guid. Control Dyn.
,
34
(
1
), pp.
73
85
.
10.
Shi
,
Z. K.
, and
Fan
,
L.
,
2013
, “
Bifurcation Analysis of Polynomial Models for Longitudinal Motion at High AOA
,”
Chin. J. Aeronaut.
,
26
(
1
), pp.
151
160
.
11.
Xin
,
Q.
, and
Shi
,
Z. K.
,
2015
, “
Bifurcation Analysis and Stability Design for Aircraft Longitudinal Motion With High Angle of Attack
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
250
259
.
12.
Shue
,
S. P.
,
Sawan
,
M. E.
,
Rokhsaz
,
K.
,
1996
, “
Optimal Feedback Control of a Nonlinear System: Wing Rock Example
,”
J. Guid. Control Dyn.
,
19
(
1
), pp.
166
171
.
13.
Zribi
,
M.
,
Alshamali
,
S.
, and
Al-Kendari
,
M.
,
2013
, “
Suppression of the Wing-Rock Phenomenon Using Nonlinear Controllers
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
313
322
.
14.
Lin
,
C. M.
, and
Hsu
,
C. F.
,
2004
, “
Supervisory Recurrent Fuzzy Neural Network Control of Wing Rock for Slender Delta Wings
,”
IEEE Trans. Fuzzy Syst.
,
12
(
5
), pp.
733
742
.
15.
Richardson
,
T.
,
Lowenberg
,
M.
,
Bernardo
,
M.
, and
Charles
,
G.
,
2006
, “
Design of a Gain-Scheduled Flight Control System Using Bifurcation Analysis
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
444
453
.
16.
Wang
,
Q.
, and
Stengel
,
R. F.
,
2005
, “
Robust Nonlinear Flight Control of a High-Performance Aircraft
,”
IEEE Trans. Control. Syst. Technol.
,
13
(
1
), pp.
15
26
.
17.
Karagiannis
,
D.
, and
Astolfi
,
A.
,
2009
, “
Nonlinear and Adaptive Flight Control of Autonomous Aircraft Using Invariant Manifolds
,”
Proc. Inst. Mech. Eng., Part G
,
224
(
4
), pp.
403
415
.
18.
Zhang
,
J. M.
,
Li
,
Q.
,
Cheng
,
N.
, and
Liang
,
B.
,
2012
, “
Nonlinear Flight Control for Unmanned Aerial Vehicles Using Adaptive Backstepping Based on Invariant Manifolds
,”
Proc. Inst. Mech. Eng., Part G
,
227
(
1
), pp.
33
44
.
19.
Raghavendra
,
P. K.
,
Sahai
,
T.
,
Kumar
,
P. A.
,
Chauhan
,
M.
, and
Ananthkrishnan
,
N.
,
2005
, “
Aircraft Spin Recovery, With and Without Thrust Vectoring, Using Nonlinear Dynamic Inversion
,”
J. Aircr.
,
42
(
6
), pp.
1492
1503
.
20.
Khatri
,
A. K.
,
Singh
,
J.
, and
Sinha
,
N. K.
,
2012
, “
Aircraft Maneuver Design Using Bifurcation Analysis and Sliding Mode Control Techniques
,”
J.Guid. Control Dyn.
,
35
(
5
), pp.
1435
1449
.
21.
Shin
,
D. H.
, and
Kim
,
Y. D.
,
2004
, “
Reconfigurable Flight Control System Design Using Adaptive Neural Networks
,”
IEEE Trans. Control. Syst. Technol.
,
12
(
1
), pp.
87
100
.
22.
Lu
,
B.
,
Wu
,
F.
, and
Kim
,
S. W.
,
2006
, “
Switching LPV Control of an F-16 Aircraft Via Controller State Reset
,”
IEEE Trans. Control Syst. Technol.
,
14
(
2
), pp.
267
277
.
23.
Adams
,
R. J.
,
Buffington
,
J. M.
, and
Banda
,
S. S.
,
1994
, “
Design of Nonlinear Control Laws for High angle of Attack Flight
,”
J.Guid. Control Dyn.
,
17
(
4
), pp.
737
746
.
24.
Shtessel
,
Y. B.
,
Shkolnikov
,
I. A.
, and
Levant
,
A.
,
2007
, “
Smooth Second-Order Sliding Modes: Missile Guidance Application
,”
Automatica
,
43
(
8
), pp.
1470
1476
.
25.
Yang
,
J.
,
Li
,
S. H.
,
Sun
,
C. Y.
, and
Guo
,
L.
,
2013
, “
Nonlinear Disturbance Observer Based Robust Flight Control for Airbreathing Hypersonic Vehicles
,”
IEEE Trans. Aerosp. Electron. Sys.
,
49
(
2
), pp.
1263
1275
.
26.
Wang
,
S. B.
,
Wang
,
X. M.
,
Xie
,
R.
, and
Yao
,
C. C.
,
2013
, “
Robust Backstepping Control Based on Disturbance Observer for Hypersonic Vehicle
,”
Control Decis.
,
28
(
10
), pp.
1507
1512
(in Chinese).
You do not currently have access to this content.