Parameter estimation is an important topic in the field of system identification. This paper explores the role of a new information theory measure of data dependency in parameter estimation problems. Causation entropy is a recently proposed information-theoretic measure of influence between components of multivariate time series data. Because causation entropy measures the influence of one dataset upon another, it is naturally related to the parameters of a dynamical system. In this paper, it is shown that by numerically estimating causation entropy from the outputs of a dynamic system, it is possible to uncover the internal parametric structure of the system and thus establish the relative magnitude of system parameters. In the simple case of linear systems subject to Gaussian uncertainty, it is first shown that causation entropy can be represented in closed form as the logarithm of a rational function of system parameters. For more general systems, a causation entropy estimator is proposed, which allows causation entropy to be numerically estimated from measurement data. Results are provided for discrete linear and nonlinear systems, thus showing that numerical estimates of causation entropy can be used to identify the dependencies between system states directly from output data. Causation entropy estimates can therefore be used to inform parameter estimation by reducing the size of the parameter set or to generate a more accurate initial guess for subsequent parameter optimization.

References

1.
Juang
,
J.-N.
,
1994
,
Applied System Identification
,
Prentice-Hall
,
Upper Saddle River, NJ
.
2.
Juang
,
J.-N.
, and
Pappa
,
R.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid.
,
8
(
5
), pp.
620
627
.
3.
Tischler
,
M.
, and
Remple
,
R.
,
2012
,
Aircraft and Rotorcraft System Identification
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
4.
Cooper
,
J.
, and
Wright
,
J.
,
1992
, “
Spacecraft In-Orbit Identification Using Eigensystem Realization Methods
,”
J. Guid., Control, Dyn.
,
15
(
2
), pp.
352
359
.
5.
Pappa
,
R.
, and
Juang
,
J.-N.
,
1984
, “
Galileo Spacecraft Modal Identification Using an Eigensystem Realization Algorithm
,”
AIAA
Paper No. 84-1070.
6.
Iliff
,
K.
,
1989
, “
Parameter Estimation for Flight Vehicles
,”
J. Guid., Control, Dyn.
,
12
(
5
), pp.
609
622
.
7.
Kabaila
,
P.
,
1983
, “
On Output-Error Methods for System Identification
,”
IEEE Trans. Autom. Control
,
28
(
1
), pp.
12
13
.
8.
Landau
,
I.
, and
Karimi
,
A.
,
1997
, “
An Output Error Recursive Algorithm for Unbiased Identification in Closed Loop
,”
Automatica
,
33
(
5
), pp.
933
938
.
9.
Iliff
,
K. W.
, and
Maine
,
R. E.
,
1982
, “
NASA Dryden's Experience in Parameter Estimation and Its Use in Flight Test
,”
AIAA
Paper No. 82-1373.
10.
Greene
,
W.
,
1980
, “
Maximum Likelihood Estimation of Econometric Frontier Functions
,”
J. Econometrics
,
13
(
1
), pp.
27
56
.
11.
Taylor
,
B.
, and
Rogers
,
J.
,
2014
, “
Experimental Investigation of Real-Time Helicopter Weight Estimation
,”
J. Aircr.
,
51
(
3
), pp.
1047
1051
.
12.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
, AC-
19
(
6
), pp.
716
723
.
13.
Akaike
,
H.
,
1972
, “
Information Theory and an Extension of the Maximum Likelihood Principle
,”
2nd International Symposium on Information Theory, Supplement to Problems of Control and Information Theory
, pp.
267
281
.
14.
Baram
,
Y.
, and
Sandell
,
N.
,
1978
, “
An Information Theoretic Approach to Dynamical Systems Modeling and Identification
,”
IEEE Trans. Autom. Control
,
AC-23
(
1
), pp.
1113
1118
.
15.
Matsuoka
,
T.
, and
Ulrych
,
T.
,
1986
, “
Information Theory Measures With Application to Model Identification
,”
IEEE Trans. Acoust., Speech, Signal Process.
,
34
(
3
), pp.
511
517
.
16.
Kulhavy
,
R.
,
1996
, “
A Kullback–Leibler Approach to System Identification
,”
Annu. Rev. Control
,
20
, pp.
119
130
.
17.
Kulhavy
,
R.
,
1996
, “
From Matching Data to Matching Probabilities
,”
Recursive Nonlinear Estimation: A Geometric Approach
, Springer Berlin Heidelberg, pp. 13–61.
18.
Kulhavy
,
R.
,
1998
, “
On Extension of Information Geometry of Parameter Estimation to State Estimation
,”
Conference on Mathematical Theory of Networks and Systems (MTNS 98)
, Padova, Italy, July 6–10.
19.
Chernyshov
,
K.
,
2006
, “
An Information Theoretic Approach to System Identification Via Input/Output Signal Processing
,”
2006 International Conference on Speech and Computer
, St. Petersburg, Russia, June 25–29.
20.
Chernyshov
,
K.
,
2009
, “
An Information Theoretic Approach to Neural Network Based System Identification
,”
2009 Siberian Conference on Control and Communications
, Tomsk, Russia, Mar. 27–28.
21.
Majda
,
A.
, and
Gershgorin
,
B.
, “
Improving Model Fidelity and Sensitivity for Complex Systems Through Empirical Information Theory
,”
Proc. Natl. Acad. Sci.
,
108
(
25
), pp.
10044
10049
.
22.
Granger
,
C. W.
,
1969
, “
Investigating Causal Relations by Econometric Models and Cross-Spectral Methods
,”
Econometrica
,
37
(3), pp.
425
438
.
23.
Granger
,
C. W.
,
1988
, “
Some Recent Developments in a Concept of Causality
,”
J. Econometrics.
,
39
(1–2), pp.
199
211
.
24.
Scheiber
,
T.
,
2000
, “
Measuring Information Transfer
,”
Phys. Rev. Lett.
,
85
(
2
), pp.
461
464
.
25.
Honey
,
C.
,
Kötter
,
R.
,
Breakspear
,
M.
, and
Sporns
,
O.
,
2007
, “
Network Structure of Cerebral Cortex Shapes Functional Connectivity on Multiple Time Scales
,”
Proc. Natl. Acad. Sci.
,
104
(
24
), pp.
10240
10245
.
26.
Vicente
,
R.
,
Wibral
,
M.
,
Lindner
,
M.
, and
Pipa
,
G.
,
2011
, “
Transfer Entropy—A Model-Free Measure of Effective Connectivity for the Neurosciences
,”
J. Comput. Neurosci.
,
30
(
1
), pp.
45
67
.
27.
Sun
,
J.
, and
Bollt
,
E.
,
2014
, “
Causation Entropy Identifies Indirect Influences, Dominance of Neighbors and Anticipatory Couplings
,”
Phys. D
,
267
, pp.
49
57
.
28.
Sun
,
J.
,
Cafaro
,
C.
, and
Bollt
,
E.
,
2014
, “
Identifying the Coupling Structure in Complex Systems Through the Optimal Causation Entropy Principle
,”
Entropy
,
16
(
6
), pp.
3416
3433
.
29.
Sun
,
J.
,
Taylor
,
D.
, and
Bollt
,
E.
,
2015
, “
Causal Network Inference by Optimal Causation Entropy
,”
SIAM J. Appl. Dyn. Syst.
,
14
(
1
), pp.
73
106
.
30.
Cover
,
T.
, and
Thomas
,
J.
,
1991
,
Elements of Information Theory
, 2nd ed.,
Wiley
,
Hoboken, NJ
, Chap. 2.
31.
Sobczyk
,
K.
, and
Holobut
,
P.
,
2012
, “
Information Theoretic Approach to Dynamics of Stochastic Systems
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
47
56
.
32.
Prokopenko
,
M.
,
Lizier
,
J.
, and
Price
,
D.
,
2013
, “
On Thermodynamic Interpretation of Transfer Entropy
,”
Entropy
,
15
(
2
), pp.
524
543
.
33.
Hahs
,
D.
, and
Pethel
,
S.
,
2013
, “
Transfer Entropy for Coupled Autoregressive Processes
,”
Entropy
,
15
(
3
), pp.
767
788
.
34.
Materassi
,
M.
,
Consolini
,
G.
,
Smith
,
N.
, and
De Marco
,
R.
,
2014
, “
Information Theory Analysis of Cascading Process in a Synthetic Model of Fluid Turbulence
,”
Entropy
,
16
(
3
), pp.
1272
1286
.
35.
Silverman
,
B.
,
1986
,
Density Estimation for Statistics and Data Analysis
,
Springer Science and Business Media
,
New York, NY
.
36.
Moon
,
Y.-I.
,
Rajagopalan
,
B.
, and
Lall
,
U.
,
1995
, “
Estimation of Mutual Information Using Kernel Density Estimators
,”
Phys. Rev. E
,
52
(
3
), pp.
2318
2321
.
37.
Kraskov
,
A.
,
Stogbauer
,
A.
, and
Grassberger
,
P.
,
2004
, “
Estimating Mutual Information
,”
Phys. Rev. E
,
69
(
6
), p.
066138
.
38.
Hlavackova-Schindler
,
K.
,
Palus
,
M.
,
Vejmelka
,
M.
, and
Bhattacharya
,
J.
,
2007
, “
Causality Detection Based on Information Theoretic Approaches to Time Series Analysis
,”
Phys. Rep.
,
441
(
1
), pp.
1
46
.
39.
Scott
,
D.
,
1992
,
Multivariate Density Estimation: Theory, Practice, and Visualization
,
Wiley
,
Hoboken, NJ
, Chap. 6.
40.
Barrat
,
A.
,
Barthelemy
,
M.
, and
Vespignani
,
A.
,
2008
,
Dynamical Processes on Complex Networks
,
Cambridge University Press
,
Cambridge, UK
.
41.
Hénon
,
M.
,
1976
, “
A Two-Dimensional Mapping With a Strange Attractor
,”
Commun. Math. Phys.
,
50
(
1
), pp.
69
77
.
42.
Reinhall
,
P.
,
Caughey
,
T.
, and
Storti
,
D.
,
1989
, “
Order and Chaos in a Discrete Duffing Oscillator: Implications on Numerical Integration
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
162
167
.
43.
More
,
J. J.
,
1978
, “
The Levenberg–Marquardt Algorithm: Implementation and Theory
,”
Numerical Analysis: Proceedings of the Biennial Conference
Dundee, June 28–July 1, G. A. Watson, ed.,
Springer
,
Berlin
, pp.
105
116
.
This content is only available via PDF.
You do not currently have access to this content.