Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.

References

1.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
2.
Mariti
,
L.
,
Belfiore
,
N. P.
,
Pennestrì
,
E.
, and
Valentini
,
P. P.
,
2011
, “
Comparison of Solution Strategies for Multibody Dynamics Equations
,”
Int. J. Numer. Methods Eng.
,
88
(
7
), pp.
637
656
.
3.
Marques
,
F.
,
Souto
,
A. P.
, and
Flores
,
P.
,
2016
, “
On the Constraints Violation in Forward Dynamics of Multibody Systems
,”
Multibody Syst. Dyn.
(Online).
4.
Ogata
,
K.
,
2001
,
Modern Control Engineering
, 4th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
5.
Grewal
,
M. S.
, and
Andrews
,
A. P.
,
2015
,
Kalman Filtering: Theory and Practice With MATLAB
, 4th ed.,
Wiley-IEEE Press
,
Hoboken, NJ
.
6.
Ripepi
,
M.
, and
Masarati
,
P.
,
2011
, “
Reduced Order Models Using Generalized Eigenanalysis
,”
Proc. Inst. Mech. Eng., Part K
,
225
(
1
), pp.
52
65
.
7.
Escalona
,
J. L.
, and
Chamorro
,
R.
,
2008
, “
Stability Analysis of Vehicles on Circular Motions Using Multibody Dynamics
,”
Nonlinear Dyn.
,
53
(
3
), pp.
237
250
.
8.
Masarati
,
P.
,
2013
, “
Estimation of Lyapunov Exponents From Multibody Dynamics in Differential-Algebraic Form
,”
Proc. Inst. Mech. Eng., Part K
,
227
(
1
), pp.
23
33
.
9.
Masarati
,
P.
, and
Tamer
,
A.
,
2015
, “
Sensitivity of Trajectory Stability Estimated by Lyapunov Characteristic Exponents
,”
Aerosp. Sci. Technol.
,
47
, pp.
501
510
.
10.
Masarati
,
P.
,
2009
, “
Direct Eigenanalysis of Constrained System Dynamics
,”
Proc. Inst. Mech. Eng., Part K
,
223
(
4
), pp.
335
342
.
11.
Gontier
,
C.
, and
Li
,
Y.
,
1995
, “
Lagrangian Formulation and Linearization of Multibody System Equations
,”
Comput. Struct.
,
57
(
2
), pp.
317
331
.
12.
Peterson
,
D. L.
,
Gede
,
G.
, and
Hubbard
,
M.
,
2015
, “
Symbolic Linearization of Equations of Motion of Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
33
(
2
), pp.
143
161
.
13.
Negrut
,
D.
, and
Ortiz
,
J. L.
,
2006
, “
A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
230
239
.
14.
González
,
F.
,
Masarati
,
P.
, and
Cuadrado
,
J.
,
2016
, “
On the Linearization of Multibody Dynamics Formulations
,”
ASME
Paper No. DETC2016-59227.
15.
Serna
,
M. A.
,
Avilés
,
R.
, and
García de Jalón
,
J.
,
1982
, “
Dynamic Analysis of Plane Mechanisms With Lower Pairs in Basic Coordinates
,”
Mech. Mach. Theory
,
17
(
6
), pp.
397
403
.
16.
Jain
,
A.
,
2011
, “
Graph Theoretic Foundations of Multibody Dynamics. Part II: Analysis and Algorithms
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
335
365
.
17.
Jain
,
A.
,
2012
, “
Multibody Graph Transformations and Analysis—Part II: Closed-Chain Constraint Embedding
,”
Nonlinear Dyn.
,
67
(
3
), pp.
2153
2170
.
18.
Rong
,
B.
,
Rui
,
X.
, and
Wang
,
G.
,
2010
, “
Modified Finite Element Transfer Matrix Method for Eigenvalue Problem of Flexible Structures
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021016
.
19.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.
20.
Bayo
,
E.
,
García de Jalón
,
J.
, and
Serna
,
M. A.
,
1988
, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
183
195
.
21.
Masarati
,
P.
,
2011
, “
Adding Kinematic Constraints to Purely Differential Dynamics
,”
Comput. Mech.
,
47
(
2
), pp.
187
203
.
22.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge
,
Springer-Verlag
,
New York
.
23.
Kamman
,
J. W.
, and
Huston
,
R. L.
,
1984
, “
Dynamics of Constrained Multibody Systems
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
899
903
.
24.
Singh
,
R. P.
, and
Likins
,
P. W.
,
1985
, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
943
948
.
25.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
,
1985
, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
J. Mech., Transm., Autom. Des.
,
107
(
1
), pp.
82
87
.
26.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
,
1986
, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems
,”
J. Mech., Transm., Autom. Des.
,
108
(
2
), pp.
183
188
.
27.
Liang
,
C. G.
, and
Lance
,
G. M.
,
1987
, “
A Differentiable Null Space Method for Constrained Dynamic Analysis
,”
J. Mech., Transm., Autom. Des.
,
109
(
3
), pp.
405
411
.
28.
Agrawal
,
O. P.
, and
Saigal
,
S.
,
1989
, “
Dynamic Analysis of Multi-Body Systems Using Tangent Coordinates
,”
Comput. Struct.
,
31
(
3
), pp.
349
355
.
29.
Dopico
,
D.
,
Zhu
,
Y.
,
Sandu
,
A.
, and
Sandu
,
C.
,
2014
, “
Direct and Adjoint Sensitivity Analysis of Ordinary Differential Equation Multibody Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011012
.
30.
Moler
,
C. B.
, and
Stewart
,
G. W.
,
1973
, “
An Algorithm for Generalized Matrix Eigenvalue Problems
,”
SIAM J. Numer. Anal.
,
10
(
2
), pp.
241
256
.
31.
González
,
F.
, and
Kövecses
,
J.
,
2013
, “
Use of Penalty Formulations in Dynamic Simulation and Analysis of Redundantly Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
29
(
1
), pp.
57
76
.
32.
Shabana
,
A. A.
,
1998
,
Dynamics of Multibody Systems
, 2nd ed.,
Cambridge University Press
,
New York
.
33.
González
,
F.
,
Dopico
,
D.
,
Pastorino
,
R.
, and
Cuadrado
,
J.
,
2016
, “
Behaviour of Augmented Lagrangian and Hamiltonian Methods for Multibody Dynamics in the Proximity of Singular Configurations
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1491
1508
.
34.
Lehoucq
,
B.
,
Sorensen
,
D. C.
, and
Vu
,
P.
,
1995
, “
ARPACK: An Implementation of the Implicitly Re-Started Arnoldi Iteration That Computes Some of the Eigenvalues and Eigenvectors of a Large Sparse Matrix
,” available from netlib@ornl.gov under the directory ScaLAPACK.
35.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
Tavares da Silva
,
M.
,
2011
, “
A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011019
.
You do not currently have access to this content.