Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.
Skip Nav Destination
Article navigation
July 2017
Research-Article
Assessment of Linearization Approaches for Multibody Dynamics Formulations
Francisco González,
Francisco González
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: f.gonzalez@udc.es
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: f.gonzalez@udc.es
Search for other works by this author on:
Pierangelo Masarati,
Pierangelo Masarati
Professor
Dipartimento di Scienze
e Tecnologie Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: pierangelo.masarati@polimi.it
Dipartimento di Scienze
e Tecnologie Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: pierangelo.masarati@polimi.it
Search for other works by this author on:
Javier Cuadrado,
Javier Cuadrado
Professor
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: javicuad@cdf.udc.es
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: javicuad@cdf.udc.es
Search for other works by this author on:
Miguel A. Naya
Miguel A. Naya
Associate Professor
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: minaya@udc.es
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: minaya@udc.es
Search for other works by this author on:
Francisco González
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: f.gonzalez@udc.es
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: f.gonzalez@udc.es
Pierangelo Masarati
Professor
Dipartimento di Scienze
e Tecnologie Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: pierangelo.masarati@polimi.it
Dipartimento di Scienze
e Tecnologie Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: pierangelo.masarati@polimi.it
Javier Cuadrado
Professor
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: javicuad@cdf.udc.es
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: javicuad@cdf.udc.es
Miguel A. Naya
Associate Professor
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: minaya@udc.es
Laboratorio de Ingeniería Mecánica,
Universidade da Coruña,
Ferrol 15403, Spain
e-mail: minaya@udc.es
1Corresponding author.
Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received October 13, 2016; final manuscript received November 25, 2016; published online January 20, 2017. Assoc. Editor: Paramsothy Jayakumar.
J. Comput. Nonlinear Dynam. Jul 2017, 12(4): 041009 (7 pages)
Published Online: January 20, 2017
Article history
Received:
October 13, 2016
Revised:
November 25, 2016
Citation
González, F., Masarati, P., Cuadrado, J., and Naya, M. A. (January 20, 2017). "Assessment of Linearization Approaches for Multibody Dynamics Formulations." ASME. J. Comput. Nonlinear Dynam. July 2017; 12(4): 041009. https://doi.org/10.1115/1.4035410
Download citation file:
Get Email Alerts
The Bouc-Wen Model for Binary Direct Collinear Collisions of Convex Viscoplastic Bodies
J. Comput. Nonlinear Dynam
Load Energy Coupling-Based Underactuated Control Method on Trajectory Planning and Antiswing for Bridge Cranes
J. Comput. Nonlinear Dynam (May 2025)
Frequency-Energy Analysis of Coupled Oscillator with Non-Smooth Asymmetrical Nonlinear Energy Sink
J. Comput. Nonlinear Dynam
Related Articles
A Simple Shear and Torsion-Free Beam Model for Multibody Dynamics
J. Comput. Nonlinear Dynam (September,2017)
On the Euler–Lagrange Equation for Planar Systems of Rigid Bodies or Lumped Masses
J. Comput. Nonlinear Dynam (September,2019)
Posing Multibody Dynamics With Friction and Contact as a Differential Complementarity Problem
J. Comput. Nonlinear Dynam (January,2018)
The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics
J. Comput. Nonlinear Dynam (May,2017)
Related Proceedings Papers
Related Chapters
Dynamic Simulations to Become Expert in Order to Set Fuzzy Rules in Real Systems
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
FKT Based Linear Precoding for Multiuser Multiple Input Multuple Output System
International Conference on Computer Engineering and Technology, 3rd (ICCET 2011)
A High Resolution DOA Estimation Method Based on Maximal Eigenvector Reconstruction
International Conference on Future Computer and Communication, 3rd (ICFCC 2011)