The nonlinear fractional-order Fokker–Planck differential equations have been used in many physical transport problems which take place under the influence of an external force filed. Therefore, high-accuracy numerical solutions are always needed. In this article, reproducing kernel theory is used to solve a class of nonlinear fractional Fokker–Planck differential equations. The main characteristic of this approach is that it induces a simple algorithm to get the approximate solution of the equation. At the same time, an effective method for obtaining the approximate solution is established. In addition, some numerical examples are given to demonstrate that our method has lesser computational work and higher precision.
Issue Section:
Research Papers
References
1.
Agrawal
, O. P.
, Tenreiro
, J. A.
, and Sabatier
, J.
, 2004
, “Introduction
,” Nonlinear Dyn.
, 38
, pp. 1
–2
.2.
Podlubny
, I.
, 1999
, Fractional Differential Equations
, Academic Press
, London
.3.
Zhao
, D.
, Yang
, X.
, and Srivastava
, H. M.
, 2015
, “Some Fractal Heat-Transfer Problems With Local Fractional Calculus
,” Therm. Sci.
, 19
(5
), pp. 1867
–1871
.4.
Yang
, X.
, Machdo
, J.
, and Hristor
, J.
, 2016
, “Nonlinear Dynamics for Local Fractional Burgers' Equation Arising in Fractal Flow
,” Nonlinear Dyn.
, 84
(1), pp. 3
–7
.5.
Ji
, J.
, 2015
, “Discrete Fractional Diffusion Equation With a Source Term
,” J. Comput. Complexity Appl.
, 1
(1
), pp. 10
–14
.6.
Wu
, F.
, and Liu
, J. F.
, 2016
, “Discrete Fractional Creep Model of Salt Rock
,” J. Comput. Complexity Appl.
, 2
(1
), pp. 1
–6
.7.
Zhou
, X.
, Liu
, B.
, and Song
, Y.
, 2016
, “Numerical Method for Differential-Algebraic Equations of Fractional Order
,” J. Comput. Complexity Appl.
, 1
(2
), pp. 54
–63
.8.
Tatari
, M.
, Dehghan
, M.
, and Razzaghi
, M.
, 2007
, “Application of the Adomian Decomposition Method for the Fokker–Planck Equation
,” Math. Comput. Model.
, 45
(5
), pp. 639
–650
.9.
Metzler
, R.
, Barkai
, E.
, and Klafter
, J.
, 1999
, “Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker–Planck Equation Approach
,” Phys. Rev. Lett.
, 82
(18
), pp. 3563
–3567
.10.
Tsallis
, C.
, and Lenzi
, E. K.
, 2002
, “Anomalous Diffusion: Nonlinear Fractional Fokker–Planck Equation
,” Chem. Phys.
, 284
(1
), pp. 341
–347
.11.
Silva
, A. T.
, Lenzi
, E.
, Evangelista
, L.
, Lenzi
, M.
, and da Silva
, L.
, 2007
, “Fractional Nonlinear Diffusion Equation Solutions and Anomalous Diffusion
,” Phys. A
, 375
(1
), pp. 65
–71
.12.
Frank
, T. D.
, 2004
, “Autocorrelation Functions of Nonlinear Fokker–Planck Equations
,” Eur. Phys. J. B
, 37
(2
), pp. 139
–142
.13.
Wu
, C. H.
, and Lu
, L. Z.
, 2010
, “Implicit Numerical Approximation Scheme for the Fractional Fokker–Planck Equation
,” Appl. Math. Comput.
, 216
(7
), pp. 1945
–1955
.14.
Deng
, W.
, 2007
, “Numerical Algorithm for the Time Fractional Fokker–Planck Equation
,” J. Comput. Phys.
, 227
(2
), pp. 1510
–1522
.15.
Deng
, W.
, 2008
, “Finite Element Method for the Space and Time Fractional Fokker–Planck Equation
,” SIAM J. Numer. Anal.
, 47
(1
), pp. 204
–226
.16.
Mei
, S. L.
, and Zhu
, D. H.
, 2013
, “Interval Shannon Wavelet Collocation Method for Fractional Fokker–Planck Equation
,” Adv. Math. Phys.
, 2013
(5
), pp. 1
–12
.17.
Chen
, S.
, Liu
, F.
, Zhuang
, P.
, and Anh
, V.
, 2009
, “Finite Difference Approximations for the Fractional Fokker–Planck Equation
,” Appl. Math. Model.
, 33
(1
), pp. 256
–273
.18.
Deng
, K. Y.
, and Deng
, W. H.
, 2012
, “Finite Difference/Predictor-Corrector Approximations for the Space and Time Fractional Fokker–Planck Equation
,” Appl. Math. Lett.
, 25
(11
), pp. 1815
–1821
.19.
Vong
, S.
, and Wang
, Z.
, 2015
, “A High Order Compact Finite Difference Scheme for Time Fractional Fokker–Planck Equations
,” Appl. Math. Lett.
, 43
(1), pp. 38
–43
.20.
Zhao
, Z. G.
, Li
, C. P.
, Mendes
, R. S.
, and Pedron
, I. T.
, 2012
, “A Numerical Approach to the Generalized Nonlinear Fractional Fokker–Planck Equation
,” Comput. Math. Appl.
, 64
(10
), pp. 3075
–3089
.21.
Du
, J.
, and Cui
, M.
, 2010
, “An Efficient Computational Method for Linear Fifth-Order Two-Point Boundary Value Problems
,” Comput. Math. Appl.
, 59
(2
), pp. 903
–911
.22.
Cui
, M.
, and Lin
, Y.
, 2009
, Nonlinear Numerical Analysis in the Reproducing Kernel Spaces
, Nova Science Publisher
, New York
.23.
Lin
, Y.
, and Zhou
, Y.
, 2009
, “Solving Nonlinear Pseudoparabolic Equations With Nonlocal Boundary Conditions in Reproducing Kernel Space
,” Numer. Algorithms
, 52
(2
), pp. 173
–186
.24.
Jiang
, W.
, and Lin
, Y.
, 2010
, “Anti-Periodic Solutions for Rayleigh-Type Equations Via the Reproducing Kernel Hilbert Space Method
,” Commun. Nonlinear. Sci. Numer. Simul.
, 15
(7
), pp. 1754
–1758
.25.
Du
, H.
, Zhao
, G. L.
, and Zhao
, C. Y.
, 2014
, “Reproducing Kernel Method for Solving Fredholm Integro-Differential Equations With Weakly Singularity
,” J. Comput. Appl. Math.
, 255
, pp. 122
–132
.26.
Arqub
, O. A.
, Al-Smadi
, M.
, and Momani
, S.
, 2013
, “Solving Fredholm Integro-Differential Equations Using Reproducing Kernel Hilbert Space Method
,” Appl. Math. Comput.
, 219
(17
), pp. 8938
–8948
.27.
Wang
, Y. L.
, Du
, M. J.
, Tan
, F. G.
, Li
, Z. Y.
, and Nie
, T. F.
, 2013
, “Using Reproducing Kernel for Solving a Class of Fractional Partial Differential Equation With Non-Classical Conditions
,” Appl. Math. Comput.
, 219
(11
), pp. 5918
–5925
.28.
Jiang
, W.
, and Tian
, T.
, 2015
, “Numerical Solution of Nonlinear Volterra Integro-Differential Equations of Fractional Order by the Reproducing Kernel Method
,” Appl. Math. Model.
, 39
(16
), pp. 4871
–4876
.29.
Geng
, F.
, and Cui
, M.
, 2012
, “A Reproducing Kernel Method for Solving Nonlocal Fractional Boundary Value Problems
,” Appl. Math. Comput.
, 25
(5
), pp. 818
–823
.30.
Diethelm
, K.
, 2004
, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
, Springer
, New York
.31.
Caputo
, M.
, 1967
, “Linear Models of Dissipation Whose Q is Almost Frequency Independent
,” J. R. Astron. Soc.
, 13
(5
), pp. 529
–539
.32.
Wu
, B.
, and Lin
, Y.
, 2012
, Applied Reproducing Kernel Theory
, Science Publisher
.33.
Young
, N.
, 1988
, An Introduction to Hilbert Space
, Cambridge University Press
, Cambridge, UK
.Copyright © 2017 by ASME
You do not currently have access to this content.