The gyroscopic exercise tool called the “Power Ball,” used to train the antebrachial muscle, is focused on. The basin of attraction of the synchronous rolling motion in the state space of initial condition is investigated. The reduced model governing the synchronous rolling motion is used and its averaged equation is deduced. The first integral for the dynamical behavior of the synchronous rolling motion occurring in the power ball is obtained. The separatrix, which identifies the basin of attraction of the synchronous rolling motion, is derived, and the ranges of initial precession angle and the initial spin angular velocity for realizing the synchronous rolling motion are clarified. These theoretically obtained results are then experimentally confirmed. Furthermore, the influences of parameters to the basin of attraction are also clarified.

References

1.
Mishler
,
1973
, “
Gyroscopic Device
,” Wornoto Inc., Willamina, OR, U.S. Patent No.
US 3726146 A
.http://www.google.co.in/patents/US3726146
2.
Gulick
,
D. W.
, and
O'Reilly
,
O. M.
,
2000
, “
On the Dynamics of the Dynabee
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
321
325
.
3.
Heyda
,
P. G.
,
2002
, “
Roller Ball Dynamics Revisited
,”
Am. J. Phys.
,
70
(
10
), pp.
1049
1051
.
4.
Heyda
,
P. G.
,
2000
, “
Roller Ball Dynamics
,”
Math. Today
,
36
(9).
5.
Petric
,
T.
,
Curk
,
B.
,
Cafuta
,
P.
, and
Zlajpah
,
L.
,
2010
, “
Modelling of the Robotic Powerball®: A Nonholonomic, Underactuated and Variable Structure-Type System
,”
Math. Comput. Modell. Dyn. Syst.
,
16
(
4
), pp. 327–346.
6.
Ishii
,
T.
,
Goto
,
Y.
,
Ogawa
,
T.
, and
Hosaka
,
H.
,
2008
, “
Development of Gyroscopic Generator
,”
J. Jpn. Soc. Precis. Eng.
,
74
(
7
), pp.
764
768
(in Japanese).
7.
Yoshikawa
,
S.
,
Iwasaki
,
J.
,
Kishimoto
,
K.
,
Hosaka
,
H.
, and
Sasaki
,
K.
,
2010
, “
Transient Analysis of Gyroscopic Power Generator
,”
J. Jpn. Soc. Precis. Eng.
,
76
(
2
), pp.
238
242
(in Japanese).
8.
Takahashi
,
T.
,
Iwasaki
,
J.
, and
Hosaka
,
H.
,
2011
, “
Passive Control of Gyroscopic Power Generator
,”
J. Rob. Soc. Jpn.
,
29
(
8
), pp.
661
666
(in Japanese).
9.
Inoue
,
T.
,
Takagi
,
K.
,
Takezaki
,
Y.
, and
Ishikawa
,
M.
,
2013
, “
Dynamical Modeling and Stability Analysis of a Gyroscopic Exercise Tool Considering Contact/Separation and Slide Between the Rotor and the Case
,”
J. Syst. Des. Dyn.
,
7
(
1
), pp.
52
65
.
10.
Inoue
,
T.
,
Takezaki
,
Y.
,
Takagi
,
K.
, and
Okumura
,
K.
,
2015
, “
Dynamical Modeling of the ‘Power Ball’ Considering the Transition Between the Rolling Mode and the Sliding Mode
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061010
.
11.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley Classics Library
, Hoboken, NJ.
12.
Baruh
,
H.
,
1998
,
Analytical Dynamics
(International Edition),
McGraw-Hill
, London.
13.
Rand
,
R. H.
,
Kinsey
,
R. J.
, and
Mingori
,
D. L.
,
1992
, “
Dynamics of Spinup Through Resonance
,”
Int. J. Nonlinear Mech.
,
27
(
3
), pp.
489
502
.
14.
Quinn
,
D. D.
, and
Rand
,
R. H.
,
1995
, “
A Perturbation Approach to Resonant Capture
,”
Smart Structures, Nonlinear Dynamics, and Control
,
Prentice Hall
, Upper Saddle River, NJ, Chap. 6.
You do not currently have access to this content.