In this paper, we construct and analyze a Legendre spectral-collocation method for the numerical solution of distributed-order fractional initial value problems. We first introduce three-term recurrence relations for the fractional integrals of the Legendre polynomial. We then use the properties of the Caputo fractional derivative to reduce the problem into a distributed-order fractional integral equation. We apply the Legendre–Gauss quadrature formula to compute the distributed-order fractional integral and construct the collocation scheme. The convergence of the proposed method is discussed. Numerical results are provided to give insights into the convergence behavior of our method.
Issue Section:
Research Papers
References
1.
Magin
, R. L.
, 2004
, “Fractional Calculus in Bioengineering—Part 1
,” Crit. Rev. Biomed. Eng.
, 32
(2
), pp. 1
–104
.2.
Baleanu
, D.
, Yusuf
, A.
, Aliyu
, A. I.
, et al., 2018
, “Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws
,” ASME J. Comput. Nonlinear Dyn.
, 13
(2
), p. 021011
.3.
Bhrawy
, A. H.
, and Zaky
, M. A.
, 2015
, “A Method Based on the Jacobi Tau Approximation for Solving Multi-Term Time–Space Fractional Partial Differential Equations
,” J. Comput. Phys.
, 281
, pp. 876
–895
.4.
Deshmukh
, V. S.
, 2015
, “Computing Numerical Solutions of Delayed Fractional Differential Equations With Time Varying Coefficients
,” ASME J. Comput. Nonlinear Dyn.
, 10
(1
), p. 011004
.5.
Li
, C.
, Zeng
, F.
, and Liu
, F.
, 2012
, “Spectral Approximations to the Fractional Integral and Derivative
,” Fract. Calc. Appl. Anal.
, 15
(3
), pp. 383
–406
.6.
Caputo
, M.
, 1967
, “Linear Models of Dissipation Whose q Is Almost Frequency Independent—II
,” Geophys J. R. Astron. Soc.
, 13
(5
), pp. 529
–539
.7.
Jiao
, Z.
, Chen
, Y.
, and Podlubny
, I.
, 2012
, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives
, Springer
, London
.8.
Eab
, C.
, and Lim
, S.
, 2011
, “Fractional Langevin Equations of Distributed Order
,” Phys. Rev. E.
, 83
(3
), p. 031136
.9.
Sandev
, T.
, Chechkin
, A. V.
, Korabel
, N.
, Kantz
, H.
, Sokolov
, I. M.
, and Metzler
, R.
, 2015
, “Distributed-Order Diffusion Equations and Multifractality: Models and Solutions
,” Phys. Rev. E.
, 92
(4
), p. 042117
.10.
Zaky
, M. A.
, 2018
, “A Legendre Collocation Method for Distributed-Order Fractional Optimal Control Problems
,” Nonlinear Dyn.
, 91
(4
), pp. 2667
–2681
.11.
Duan
, J.-S.
, and Baleanu
, D.
, 2015
, “Steady Periodic Response for a Vibration System With Distributed Order Derivatives to Periodic Excitation
,” J. Vib. Control
, 24
(14
), pp. 3124
–3131
.12.
Ford
, N. J.
, and Morgado
, M. L.
, 2012
, “Distributed Order Equations as Boundary Value Problems
,” Comput. Math. Appl.
, 64
(10
), pp. 2973
–2981
.13.
Atanackovic
, T.
, Pilipovic
, S.
, and Zorica
, D.
, 2009
, “Existence and Calculation of the Solution to the Time Distributed Order Diffusion Equation
,” Phys. Scr.
, 2009
(T136
), p. 014012
.14.
Bagley
, R.
, and Torvik
, P.
, 2000
, “On the Existence of the Order Domain and the Solution of Distributed Order Equations—Part I
,” Int. J. Appl. Math.
, 2
(7
), pp. 865
–882
.https://www.researchgate.net/publication/306079170_On_the_Existence_of_the_Order_Domain_and_the_Solution_of_Distributed_Order_Equations_-_Part_I15.
Li
, Z.
, Luchko
, Y.
, and Yamamoto
, M.
, 2014
, “Asymptotic Estimates of Solutions to Initial-Boundary-Value Problems for Distributed Order Time-Fractional Diffusion Equations
,” Fract. Calc. Appl. Anal.
, 17
(4
), pp. 1114
–1136
.16.
Katsikadelis
, J. T.
, 2014
, “Numerical Solution of Distributed Order Fractional Differential Equations
,” J. Comput. Phys.
, 259
, pp. 11
–22
.17.
Diethelm
, K.
, and Ford
, N. J.
, 2009
, “Numerical Analysis for Distributed-Order Differential Equations
,” J. Comput. Appl. Math.
, 225
(1
), pp. 96
–104
.18.
Fernández-Anaya
, G.
, Nava-Antonio
, G.
, Jamous-Galante
, J.
, Muñoz-Vega
, R.
, and Hernández-Martínez
, E.
, 2017
, “Asymptotic Stability of Distributed Order Nonlinear Dynamical Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 48
, pp. 541
–549
.19.
Caputo
, M.
, 2011
, “Distributed Order Differential Equations Modelling Dielectric Induction and Diffusion
,” Fract. Calc. Appl. Anal.
, 4
, pp. 421
–442
.20.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 2002
, “Mathematical Modeling of the Dynamics of Anomalous Migration Fields Within the Framework of the Model of Distributed Order
,” Nonlinear Dyn.
, 29
, pp. 57
–98
.21.
Li
, X.
, and Wu
, B.
, 2016
, “A Numerical Method for Solving Distributed Order Diffusion Equations
,” Appl. Math. Lett.
, 53
, pp. 92
–99
.22.
Abbaszadeh
, M.
, and Dehghan
, M.
, 2017
, “An Improved Meshless Method for Solving Two-Dimensional Distributed Order Time-Fractional Diffusion-Wave Equation With Error Estimate
,” Numer. Algor.
, 75
(1
), pp. 173
–211
.23.
Hu
, X.
, Liu
, F.
, Turner
, I.
, and Anh
, V.
, 2016
, “An Implicit Numerical Method of a New Time Distributed-Order and Two-Sided Space-Fractional Advection-Dispersion Equation
,” Numer. Algor.
, 72
(2
), pp. 393
–407
.24.
Bu
, W.
, Xiao
, A.
, and Zeng
, W.
, 2017
, “Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations
,” J. Sci. Comput.
, 72
(1
), pp. 422
–441
.25.
Du
, R.
, Hao
, Z.-P.
, and Sun
, Z.-Z.
, 2016
, “Lubich Second-Order Methods for Distributed-Order Time-Fractional Differential Equations With Smooth Solutions
,” East Asian J. Appl. Math.
, 6
(2
), pp. 131
–151
.26.
Gao
, G.-h.
, and Sun
, Z.-Z.
, 2017
, “Two Difference Schemes for Solving the One-Dimensional Time Distributed-Order Fractional Wave Equations
,” Numer. Algor.
, 74
(3
), pp. 675
–697
.27.
Pimenov
, V. G.
, Hendy
, A. S.
, and De Staelen
, R. H.
, 2017
, “On a Class of Non-Linear Delay Distributed Order Fractional Diffusion Equations
,” J. Comput. Appl. Math.
, 318
, pp. 433
–443
.28.
Bhrawy
, A.
, and Zaky
, M.
, 2017
, “Numerical Simulation of Multi-Dimensional Distributed-Order Generalized Schrödinger Equations
,” Nonlinear Dyn.
, 89
(2
), pp. 1415
–1432
.29.
Zaky
, M.
, and Machado
, J. T.
, 2017
, “On the Formulation and Numerical Simulation of Distributed-Order Fractional Optimal Control Problems
,” Commun. Nonlinear Sci. Numer. Simulat.
, 52
, pp. 177
–189
.30.
Kharazmi
, E.
, Zayernouri
, M.
, and Karniadakis
, G. E.
, 2017
, “Petrov–Galerkin and Spectral Collocation Methods for Distributed Order Differential Equations
,” SIAM J. Sci. Comput.
, 39
(3
), pp. A1003
–A1037
.31.
Morgado
, M. L.
, Rebelo
, M.
, Ferras
, L. L.
, and Ford
, N. J.
, 2017
, “Numerical Solution for Diffusion Equations With Distributed Order in Time Using a Chebyshev Collocation Method
,” Appl. Numer. Math.
, 114
, pp. 108
–123
.32.
Podlubny
, I.
, 1999
, Fractional Differential Equations
, Academic Press
, San Diego, CA
.33.
Carnahan
, B.
, and Luther
, H. A.
, 1969
, Applied Numerical Methods
, Wiley
, New York
.34.
Kreyszig
, E.
, 1978
, Introductory Functional Analysis With Applications
, Wiley
, London
.35.
Canuto
, C.
, Quarteroni
, A.
, Hussaini
, M. Y.
, and Zang
, T. A.
, 2006
, Spectral Methods Fundamentals in Single Domains
, Springer
Berlin
.36.
Shen
, J.
, and Tang
, T.
, 2006
, Spectral and High-Order Methods With Applications
, Science
, Beijing, China
.37.
Adams
, R. A.
, 1975
, Sobolev Spaces
, Academic Press
, New York
.38.
Mashayekhi
, S.
, and Razzaghi
, M.
, 2016
, “Numerical Solution of Distributed Order Fractional Differential Equations by Hybrid Functions
,” J. Comput. Phys.
, 315
, pp. 169
–181
.Copyright © 2018 by ASME
You do not currently have access to this content.