The main goal of this paper is to design a state feedback control that makes a point mass track a non-Zeno reference trajectory in a planar billiard. This objective is achieved by first determining a continuous-time dynamical model, whose trajectories approximate the solutions of the hybrid system. Hence, a state feedback that makes the hybrid system track a reference trajectory of the continuous-time one is proposed. Finally, these two techniques are combined in order to find a state feedback that achieves tracking of the trajectories of the unforced system. Examples are reported all throughout the paper to illustrate the theoretical results.
Issue Section:
Research Papers
References
1.
Galeani
, S.
, Menini
, L.
, Potini
, A.
, and Tornambe
, A.
, 2008
, “Trajectory Tracking for a Particle in Elliptical Billiards
,” Int. J. Control
, 81
(2
), pp. 189
–213
.2.
Sinai
, Y. G.
, 1970
, “Dynamical Systems With Elastic Reflections
,” Russ. Math. Surv.
, 25
(2
), pp. 137
–189
.3.
Bunimovich
, L. A.
, Sinai
, Y. G.
, and Chernov
, N. I.
, 1991
, “Statistical Properties of Two-Dimensional Hyperbolic Billiards
,” Russ. Math. Surv.
, 46
(4
), pp. 47
–106
.4.
Burago
, D.
, Ferleger
, S.
, and Kononenko
, A.
, 1998
, “Uniform Estimates on the Number of Collisions in Semi-Dispersing Billiards
,” Ann. Math
, 147
(3
), pp. 695
–708
.5.
Lehman
, R.
, and White
, C.
, 2002
, “Hyperbolic Billiard Paths
,” Math. Sci. Tech. Rep.
, 61
, pp. 1–32.https://scholar.rose-hulman.edu/math_mstr/61/6.
Chernov
, N.
, and Markarian
, R.
, 2006
, “Chaotic Billiards
,” Math. Surv. Monographs
, 127
, pp. 1–278.7.
Gibbs
, J. W.
, 2014
, Elementary Principles in Statistical Mechanics
, Courier Corp
, Mineola, NY.8.
Steiner
, F.
, 1994
, “Quantum Chaos
,” preprint arXiv:chao-dyn/9402001
.https://arxiv.org/abs/chao-dyn/94020019.
Chernov
, N. I.
, 1991
, “New Proof of Sinai's Formula for the Entropy of Hyperbolic Billiard Systems. Application to Lorentz Gases and Bunimovich Stadiums
,” Funct. Anal. Applic
, 25
(3
), pp. 204
–219
.10.
Bardos
, C.
, Caflisch
, R. E.
, and Nicolaenko
, B.
, 1986
, “The Milne and Kramers Problems for the Boltzmann Equation of a Hard Sphere Gas
,” Commun. Pure Appl. Math.
, 39
(3
), pp. 323
–352
.11.
Brogliato
, B.
, Niculescu
, S.-I.
, and Orhant
, P.
, 1997
, “On the Control of Finite-Dimensional Mechanical Systems With Unilateral Constraints
,” IEEE Trans. Autom. Control
, 42
(2
), pp. 200
–215
.12.
Brogliato
, B.
, and Zavala Rio
, A.
, 2000
, “On the Control of Complementary-Slackness Juggling Mechanical Systems
,” IEEE Trans. Autom. Control
, 45
(2
), pp. 235
–246
.13.
Brogliato
, B.
, 2000
, Impacts in Mechanical Systems: Analysis and Modelling
, Springer-Verlag, Berlin.14.
Heemels
, W. P. M. H.
, and Brogliato
, B.
, 2003
, “The Complementarity Class of Hybrid Dynamical Systems
,” Eur. J. Control
, 9
(2–3
), pp. 322
–360
.15.
Brogliato
, B.
, 2003
, “Some Perspectives on the Analysis and Control of Complementarity Systems
,” IEEE Trans. Autom. Control
, 48
(6
), pp. 918
–935
.16.
Brogliato
, B.
, 2016
, Nonsmooth Mechanics
, Springer-Verlag, London.17.
Brogliato
, B.
, 2017
, “Feedback Control of Multibody Systems With Joint Clearance and Dynamic Backlash: A Tutorial
,” Multibody Syst. Dyn.
, 42
(3
), pp. 283
–315
.18.
Sanfelice
, R. G.
, Teel
, A. R.
, and Sepulchre
, R.
, 2007
, “A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems
,” 46th IEEE on Decision and Control
(CDC
), New Orleans, LA, Dec. 12–14, pp. 5282
–5287
.19.
Goebel
, R.
, Sanfelice
, R. G.
, and Teel
, A. R.
, 2009
, “Hybrid Dynamical Systems
,” IEEE Control Syst. Mag.
, 29
(2
), pp. 28
–93
.20.
Rizzi
, A. A.
, Whitcomb
, L. L.
, and Koditschek
, D. E.
, 1992
, “Distributed Real-Time Control of a Spatial Robot Juggler
,” Computer
, 25
(5
), pp. 12
–24
.21.
Forni
, F.
, Teel
, A. R.
, and Zaccarian
, L.
, 2013
, “Follow the Bouncing Ball: Global Results on Tracking and State Estimation With Impacts
,” IEEE Trans. Autom. Control
, 58
(6
), pp. 1470
–1485
.22.
Rijnen
, M.
, Saccon
, A.
, and Nijmeijer
, H.
, 2015
, “On Optimal Trajectory Tracking for Mechanical Systems With Unilateral Constraints
,” 54th IEEE Conference on Decision Control
(CDC
), Osaka, Japan, Dec. 15–18, pp. 2561
–2566
.23.
Tanwani
, A.
, Brogliato
, B.
, and Prieur
, C.
, 2014
, “On Output Regulation in State-Constrained Systems: An Application to Polyhedral Case
,” IFAC Proc.
, 47
(3), pp. 1513
–1518
.24.
Tanwani
, A.
, Brogliato
, B.
, and Prieur
, C.
, 2016
, “Observer Design for Unilaterally Constrained Lagrangian Systems: A Passivity-Based Approach
,” IEEE Trans. Autom. Control
, 61
(9
), pp. 2386
–2401
.25.
Menini
, L.
, and Tornambe
, A.
, 2003
, “Control of (Otherwise) Uncontrollable Linear Mechanical Systems Through Non-Smooth Impacts
,” Syst. Control Lett.
, 49
(4
), pp. 311
–322
.26.
Menini
, L.
, Possieri
, C.
, and Tornambe
, A.
, 2015
, “On the Computation of the Continuous-Time Reference Trajectory for Mechanical Juggling Systems
,” IEEE 54th Annual Conference on Decision and Control (CDC
), Osaka, Japan, Dec. 15–18, pp. 145
–150
.27.
Tornambe
, A.
, 1993
, “Global Output Tracking of Polynomial Reference Signals for a Class of Single-Input Single-Output Nonlinear Systems
,” IEE Proc. Control Theory Appl.
, 140
(2), pp. 93
–98
.28.
Menini
, L.
, Possieri
, C.
, and Tornambè
, A.
, 2018
, “Dead–Beat Regulation of Mechanical Juggling Systems
,” Asian J. Control
, 20
(1
), pp. 1
–11
.29.
Brogliato
, B.
, Niculescu
, S.
, and Monteiro-Marques
, M.
, 2000
, “On Tracking Control of a Class of Complementary-Slackness Hybrid Mechanical Systems
,” Syst. Control Lett.
, 39
(4
), pp. 255
–266
.30.
Miranda-Villatoro
, F.
, Brogliato
, B.
, and Castaños
, F.
, 2016
, “Multivalued Robust Tracking Control of Lagrange Systems: Continuous and Discrete–Time Algorithms
,” IEEE Trans. Autom. Control
, 62
(9
), pp. 4436
–4450
.31.
Halpern
, B.
, 1977
, “Strange Billiard Tables
,” Trans. Am. Math. Soc
, 232
, pp. 297
–305
.32.
Vanderbei
, R.
, 1996
, Linear Programming: Foundations and Extensions
, Springer
, New York
.33.
Wright
, S.
, and Nocedal
, J.
, 1999
, Numerical Optimization
, Vol. 35
, Springer-Verlag, New York, pp. 67
–68
.34.
Menini
, L.
, and Tornambe
, A.
, 2000
, “The Use of the Barrier Method for the Impact Analysis in Mechanical Systems
,” IFAC Proc. Vol.
, 33
(13), pp. 77–82.35.
Goebel
, R.
, Sanfelice
, R. G.
, and Teel
, A. R.
, 2012
, Hybrid Dynamical Systems
, Princeton University Press
, Princeton, NJ.36.
Goebel
, R.
, and Sanfelice
, R.
, 2016
, “How Well-Posedness of Hybrid Systems Can Extend Beyond Zeno Times
,” 55th IEEE Conference on Decision and Control
(CDC
), Las Vegas, NV, Dec. 12–14, pp. 598
–603
.37.
Curtiss
, D. R.
, 1918
, “Recent Extensions of Descartes' Rule of Signs
,” Ann. Math.
, 19
(4), pp. 251
–278
.38.
Montano
, O. E.
, Orlov
, Y.
, and Aoustin
, Y.
, 2016
, “Nonlinear H∞-Control Under Unilateral Constraints
,” Int. J. Control
, 89
(12
), pp. 2549
–2571
.Copyright © 2018 by ASME
You do not currently have access to this content.